Sensing and Control of Additive Manufacturing Processes

    公开(公告)号:US20190118300A1

    公开(公告)日:2019-04-25

    申请号:US16114188

    申请日:2018-08-27

    Abstract: Systems, devices, and methods for additive manufacturing are provided that allow for components being manufactured to be assessed during the printing process. As a result, changes to a print plan can be considered, made, and implemented during the printing process. More particularly, in exemplary embodiments, a spectrometer is operated while a component is being printed to measure one or more parameters associated with one or more layers of the component being printed. The measured parameter(s) are then relied upon to determine if any changes are needed to the way printing is occurring, and if such changes are desirable, the system is able to implement such changes during the printing process. By way of non-limiting examples, printed material in one or more layers may be reheated to alter the printed component, such as to remove defects identified by the spectrometer data. A variety of systems, devices, and methods for performing real-time sensing and control of an additive manufacturing process are also provided.

    CONTROLLED-ORIENTATION FILMS AND NANOCOMPOSITES INCLUDING NANOTUBES OR OTHER NANOSTRUCTURES

    公开(公告)号:US20180086641A1

    公开(公告)日:2018-03-29

    申请号:US15694554

    申请日:2017-09-01

    Abstract: Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures. In some instances, the application of a force may result in a material comprising relatively closely-spaced nanostructures. The materials described herein may be further processed for use in various applications, such as composite materials (e.g., nanocomposites). For example, a set of aligned nanostructures may be formed, and, after the application of a force, transferred, either in bulk or to another surface, and combined with another material (e.g., to form a nanocomposite) to enhance the properties of the material.

    SYSTEMS, DEVICES, AND METHODS FOR DEPOSITION-BASED THREE-DIMENSIONAL PRINTING

    公开(公告)号:US20170165908A1

    公开(公告)日:2017-06-15

    申请号:US15376416

    申请日:2016-12-12

    Abstract: Methods, systems, and devices for extrusion-based three-dimensional printing are provided. The methods, systems, and devices allow for the printing materials such as fabrics, clothing, and wearable and/or implantable devices. A number of different enhancements are provided that allow for this improved form of three-dimensional printing, including: (1) printing using a polymer (e.g., cellulose acetate) dissolved in a solvent (e.g., acetone); (2) selectively bonding portions of a deposited filament onto one or more surfaces and/or one or more previously deposited filaments; (3) using particular toolpaths to create a fabric or similar material by creating a woven pattern; and (4) printing across multiple layers even when previous layers are not complete. Other aspects of the present disclosure, including other enhancements and various printer configurations, are also provided.

    CONTINUOUS PROCESS FOR THE PRODUCTION OF NANOSTRUCTURES INCLUDING NANOTUBES
    66.
    发明申请
    CONTINUOUS PROCESS FOR THE PRODUCTION OF NANOSTRUCTURES INCLUDING NANOTUBES 审中-公开
    用于生产纳米管的纳米结构的连续工艺

    公开(公告)号:US20170057823A1

    公开(公告)日:2017-03-02

    申请号:US15182403

    申请日:2016-06-14

    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.

    Abstract translation: 本发明提供了在衬底的表面上纳米结构例如纳米管(例如,碳纳米管)均匀生长的方法,其中纳米结构的长轴可以基本上对齐。 纳米结构可以进一步加工以用于各种应用中,例如复合材料。 例如,可以将一组对准的纳米结构体在本体或另一表面中形成并转移到另一种材料上以增强材料的性质。 在一些情况下,纳米结构可以增强材料的机械性能,例如在两个材料或层之间的界面处提供机械加强。 在一些情况下,纳米结构可以增强材料的热和/或电子性质。 本发明还提供用于生长纳米结构的系统和方法,包括间歇方法和连续方法。

Patent Agency Ranking