Abstract:
Various techniques for providing network connectivity are described herein. In one example, a moving object includes an uplink device of the moving object to connect the moving object to a publicly available computer network. The moving object also includes a downlink device of the moving object to be communicatively coupled to a remote device at a specific segment along a route of the moving object. The remote device is to provide data received via the downlink device to a user. The moving object also further includes a cache store communicatively coupled to the uplink device and the downlink device. Implementations include the use of commercial airplanes for providing connectivity via intermittent access and refreshing of a cache store that makes content available to end users.
Abstract:
This document describes techniques and apparatuses for suppressing power spikes. In some embodiments, these techniques and apparatuses determine an available amount of power that a battery is capable of providing while maintaining a particular voltage level and a requisite amount of power that components will consume to perform a task. When the requisite amount of power exceeds the available amount of power, power states of the components are altered effective to enable the battery to maintain the particular voltage level.
Abstract:
A shared electrode battery includes multiple electrodes of one type (e.g., two or more cathodes) that share an electrode of another type (e.g., a shared anode). The multiple electrodes of the same type (e.g., the multiple cathodes) can have different characteristics, such as different chemistries, particle sizes and distributions, capacities, and so forth that are designed to provide particular features such as high energy density, high power density, high cycle life, fast charge, safety, and so forth. Multiple cathode-anode pairings of one of the multiple electrodes of the same type with the shared electrode are possible. Switching hardware is operable to select one of the multiple pairings at any given time, allowing the battery to provide power using the cathode having the desired characteristics at that given time. A single battery is thus able to provide these multiple different features.
Abstract:
A continual learning process is applied to a class of risk estimate-based algorithms and associated risk thresholds used for deciding when to initiate a handoff between different types of network connections that are available to a mobile device having telephony functionality. The process is implemented as a virtuous loop providing ongoing tuning and adjustment to improve call handoff algorithms and risk thresholds so that handoffs can be performed with the goals of minimizing dropped calls and unacceptable degradation in call quality as well as avoiding premature handoffs. Device characteristics, environmental context, connection measurements, and outcomes of call handoff decisions are crowd-sourced from a population of mobile devices into a cloud-based handoff decision enabling service. The service evaluates potentially usable handoff decision algorithms and risk thresholds against archived crowd-sourced data to determine how they would have performed in real world situations and delivers improved algorithms and risk thresholds to the mobile devices.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based on information received at a road-based device, such as a sensor or processor that is deployed at the side of a road. An example AEFS receives, at a road-based device, information about a first vehicle that is proximate to the road-based device. The AEFS analyzes the received information to determine threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
Abstract:
This document describes techniques and apparatuses of load allocation for multi-battery devices. In some embodiments, these techniques and apparatuses determine an amount of load power that a multi-battery device consumes to operate. Respective efficiencies at which the device's multiple batteries are capable of providing power are also determined. A respective portion of load power is then drawn from each of the batteries based on their respective efficiencies.
Abstract:
Techniques for dynamically changing internal state of a battery are described herein. Generally, different battery configurations are described that enable transitions between different battery power states, such as to accommodate different battery charge and/or discharge scenarios.
Abstract:
Various techniques for providing network connectivity are described herein. In one example, a moving object includes an uplink device of the moving object to connect the moving object to a publicly available computer network. The moving object also includes a downlink device of the moving object to be communicatively coupled to a remote device at a specific segment along a route of the moving object. The remote device is to provide data received via the downlink device to a user. The moving object also further includes a cache store communicatively coupled to the uplink device and the downlink device. Implementations include the use of commercial airplanes for providing connectivity via intermittent access and refreshing of a cache store that makes content available to end users.
Abstract:
A technique for resource allocation in a wireless network (for example, an access point type wireless network), which supports concurrent communication on a band of channels, is provided. The technique includes accepting connectivity information for the network that supports concurrent communication on the band of channels. A conflict graph is generated from the connectivity information. The generated conflict graph models concurrent communication on the band of channels. A linear programming approach, which incorporates information form the conflict graph and rate requirements for nodes of the network, can be utilized to maximize throughput of the network.
Abstract:
The disclosure herein describes using satellites and ground sinks and/or stations for routing IoT device data packets from IoT devices. A target ground sink in range of the satellite is identified and an expected reception (ER) score for the target ground sink is calculated based on ER parameter data and location data of the satellite. A data packet in a first level of a multi-level data structure of the satellite is sent to the target ground sink and, based on an ER threshold exceeding the ER score, the packet is moved to a second level of the multi-level data structure, whereby the data packet is queued to be sent to another ground sink. The disclosure further includes using cell towers as ground sinks and/or using them for backhauling with other ground sinks. The flexibility of the disclosure enables large ground sink networks to be established, reducing latency of packet routing.