Abstract:
Methods, systems, and devices are described for Wireless Local Area Network (WLAN) offloading through radio access network rules. In one embodiment of a method of wireless communication, a mobile device may determine that Radio Access Network (RAN) assistance information is unavailable, the RAN assistance information including a first set of thresholds for switching a Packet Data Network (PDN) connection of the mobile device from a WLAN to a Wireless Wide Area Network (WWAN). The mobile device may further access a second set of thresholds based at least in part on the determining, and the mobile device may determine to switch the PDN connection from the WLAN to the WWAN based at least in part on the second set of thresholds.
Abstract:
A method of wireless communication by a UE (user equipment) includes transmitting a list to an IMS (IP multimedia subsystem) service center. The list includes multiple mobile station international subscriber directory numbers (MSISDNs). The method also includes receiving a paging message indicating different causes for the paging message. A method of wireless communications by a network determines whether a call initiator is in a list received from a UE (user equipment) in response to receiving a mobile terminated call for the UE. The list comprises multiple mobile station international subscriber directory numbers (MSISDNs). The network also transmits a message to the UE indicating whether the mobile terminated call is from one of the MSISDNs in the list.
Abstract:
A method, a computer-readable medium, and an apparatus are provided for a network entity. The network entity receives an analytics request from a consumer, the analytics request indicating at least one analytic and determines one or more network data analytics functions (NWDAFs) for the analytics request based on the at least one analytic indicated in the analytics request. A consumer sends an analytics request to a network entity including one or more analytics identifiers. The consumer receives, from the network entity, a response to the analytics request including an analytics output from one or more NWDAFs based on the analytics identifier(s) included in the analytics request. An NWDAF sends an analytics identifier registration to a network entity indicating one or more analytics supported by the NWDAF. Then, the NWDAF receives an analytics request(s) from consumer(s) via the network entity based on the NWDAF supporting an analytic in the analytics request.
Abstract:
Methods, systems, and devices for wireless communications are described. A multicast architecture may support flexible change between unicast and multicast operations and may support additional traffic types (e.g., Internet Protocol and Ethernet traffic). For example, the multicast architecture may include transmitting data over a shared multicast radio bearer (MRB) and/or specific data radio bearers (DRBs), a multicast user plane function (UPF) for supplying the multicast data to a base station, multicast data from different radio access networks (RANs), protecting the multicast data through creating a group key, ciphering the multicast data sent on the MRB using the group key, and transitioning the multicast data from a source RAN to a target RAN.
Abstract:
Techniques are described for wireless communication. A method for wireless communication at a user equipment (UE) includes configuring a relay selection rule; receiving at least one discovery message from each of a plurality of proximity services (ProSe) relay candidates providing access to a network; evaluating the received discovery messages with respect to the relay selection rule; selecting a first ProSe relay candidate from the plurality of ProSe relay candidates based at least in part on the evaluating; and connecting to the network via the first ProSe relay candidate. A method for wireless communication at a ProSe relay candidate includes receiving, from a network, a ProSe Relay Indication (PRI); broadcasting at least one discovery message that includes the PRI; and receiving a relay connection request from a UE based at least in part on a compliance of the at least one discovery message with a relay selection rule of the UE.
Abstract:
Methods and techniques are described for supporting location services for a user equipment (UE) using a location server and service based interfaces (SBIs) and SBI service operations in a Fifth Generation wireless network. The location server may be, e.g., a Location Management Function (LMF). The LMF may be in either a serving Public Land Mobile Network (PLMN) for a UE or in a Home PLMN for a roaming UE. The LMF may receive a location service request for the UE using an SBI and may communicate with another entity in the network, through a second entity and using an SBI, to obtain location information for the UE measured by the other entity. The LMF may determine a location for the UE based on the location information.
Abstract:
Methods, systems, and devices for wireless communications are described. An access and mobility management function (AMF) associated with a first radio access network (RAN) may identify a user equipment (UE) connected to a source base station of the first RAN. The AMF may receive a handover message including a voice call continuity handover trigger message indicating a handover of the UE to a target base station associated with a second RAN. In some examples, the AMF may transmit a bypass handover message to a second network device based a on the received handover message. In some cases, the bypass handover message may include the voice call continuity handover trigger message. In some examples, the second network device is a mobility management entity (MME) associated with an Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
Abstract:
Aspects of the present disclosure relate to a mechanism to enable interworking between fifth generation system (5GS) network slicing and evolved packet core (EPC) connectivity. In an example, techniques are provided for existing packet data unit (PDU) sessions that provide connectivity to a network slice from a set of network slices. Connectivity to the network slice is in response to a user equipment (UE), that uses network slices, moving between a 5G network and a 4G network. The existing PDU sessions are connected to a dedicated EPC core network that supports the same services provided by the network slice.
Abstract:
Methods, systems, and devices for wireless communications are described. A multicast architecture may support flexible change between unicast and multicast operations and may support additional traffic types (e.g., Internet Protocol and Ethernet traffic). For example, the multicast architecture may include transmitting data over a shared multicast radio bearer (MRB) and/or specific data radio bearers (DRBs), a multicast user plane function (UPF) for supplying the multicast data to a base station, multicast data from different radio access networks (RANs), protecting the multicast data through creating a group key, ciphering the multicast data sent on the MRB using the group key, and transitioning the multicast data from a source RAN to a target RAN.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for truncated identification indicators. A user equipment (UE) may receive control signaling indicating a truncating configuration for an identification indicator. The truncating configuration may indicate a set of bits within an initial identification indicator to remove to generate a truncated identification indicator. The UE may remove the indicated set of bits and transmit the truncated identification indicator to a base station. The base station may receive the truncated identification indicator and reconstruct the initial identification indicator according to the truncating configuration. The base station may reconstruct the initial identification indicator by adding the set of bits (e.g., removed by the UE to generate the truncated identification indicator) to the truncated identification indicator.