摘要:
Systems and methodologies are described that facilitate cell search, selection, and reselection within a wireless communication network that includes a home node base station (home nodeB). A user equipment (UE) can detect a home nodeB and communicate such identification to a macro network that includes at least one node base station (nodeB). The detected home nodeB and nodeB can be hierarchically structured in order to prioritize connectivity with the home nodeB over the nodeB. Such prioritization can be implemented by broadcasting home nodeB parameters and macro nodeB parameters having identification information therewith.
摘要:
Systems and methodologies are described herein that facilitate improved cell search and selection in a wireless communication system. For example, a terminal as described herein can utilize one or more Closed Subscriber Group (CSG)-specific offset and/or hysteresis parameters as described herein to increase the amount of time on which the terminal is allowed to camp on a desirable cell. Additionally, specialized reselection timing can be employed as described herein to increase a delay associated with selecting a Home Node B (HNB) or Home Evolved Node B (HeNB) cell, thereby reducing power consumption associated with rapid cell reselection operations in a densely populated network environment. Further, a two-step reselection process can be performed as described herein in the context of selecting a frequency for cell reselection, thereby mitigating the effects of rapid reselection between cells and/or frequencies due to CSG cell prioritization.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with enabling communication of small data amounts while maintaining a RRC idle mode of operation for a UE. In an example, a UE is equipped to obtain a temporary radio bearer for communication of data, that meets one or more criteria for small data transmission, over a user plane in a UMTS or LTE based network, and transmit the data, over the user plane, using the temporary radio bearer while maintaining the UE in an RRC idle mode. A UTRAN entity may receive, over the temporary radio bearer assignment, the data from a UE in an idle mode, and send the data to a SGSN using a common small data connection. The SGSN may then send the data to a PGW.
摘要:
Certain aspects of the present disclosure provide techniques for slice-aware network selection. Particular aspects provide for a method for wireless communication performed by a user equipment (UE). The method generally includes obtaining, for one or more networks, network slicing information indicating one or more slice identifiers supported in the one or more networks, deriving a list of one or more preferred networks based, at least in part, on the network slicing information, and selecting a network to register with from the list of one or more preferred networks.
摘要:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and a base station may determine whether the UE is inside or outside of a vehicle with a relay device. Techniques for determining whether the UE is inside or outside of the vehicle are described herein. The UE may determine whether to camp on a cell of the relay device based on whether the UE is inside or outside the vehicle. The base station may perform connected mode mobility for the UE based on whether the UE is inside or outside the vehicle.
摘要:
Aspects relate to location services in a wireless communication network. A first wireless communication device may send capability information to the network indicating that the first wireless communication device supports a location services protocol but does not support location services notifications. Upon receiving this capability information, the network may refrain from performing a privacy check procedure directed to the first wireless communication device. As another example, the network may refrain from performing a privacy check procedure directed to the first wireless communication device based on a determination that the first wireless communication device performs a relay function (or otherwise does not support location services notifications or user interaction). As yet another example, the network may determine, based on a privacy profile of the first wireless communication device, that the first wireless communication device is a type of device that is not associated with privacy checks.
摘要:
Example implementations include a method, apparatus, and computer-readable medium of wireless communication for a network node to transport signaling used to coordinate management of a RAN for local traffic between a first node and a UE across a wireless connection. The network node may establish a first wireless signaling connection between a first node and a second node. The network node may encapsulate or decapsulate traffic associated with a second wireless signaling connection within the first wireless signaling connection. The second wireless signaling connection corresponds to a non-F1 interface of a control plane or user plane network function that terminates at the first node. For instance, the network node may be a consumer premises equipment (CPE) serving a UE, a base station wirelessly serving the CPE, or a core network node providing control for the UE.
摘要:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and a base station may determine whether the UE is inside or outside of a vehicle with a relay device. Techniques for determining whether the UE is inside or outside of the vehicle are described herein. The UE may determine whether to camp on a cell of the relay device based on whether the UE is inside or outside the vehicle. The base station may perform connected mode mobility for the UE based on whether the UE is inside or outside the vehicle.
摘要:
Systems and methodologies are described that facilitate communicating PSC split information regarding neighboring cells. The PSC split information can be transmitted in one or more overhead messages selected based on network deployment. Where macro cells and femto cells provide PSC split information, which can be a PSC range for related cells, PSC list, etc., the information can be transmitted in a low priority overhead message since it can be obtained at a source cell. Where only femto cells or closed subscriber group (CSG) cells provide PSC split information, the information can be transmitted in a higher priority more frequently transmitted message. In this regard, the information is available at target cells since not all devices can access CSG cells. Thus, by providing the PSC split information in a more frequently transmitted message, devices can retrieve the PSC split information early on in communications to lower power consumption.
摘要:
The present disclosure presents a method and apparatus for handling primary scrambling codes (PSC) in a wireless network. For example, the disclosure presents a method for detecting, by a user equipment (UE) of a plurality of UEs, a PSC in search windows with different timing offsets, wherein the different timing offsets correspond to a plurality of small cells sharing the PSC in a coverage area of a macro cell, and transmitting, by the UE, a plurality of measurement reports corresponding to the different timing offsets. As such, primary scrambling codes (PSC) are handled in a wireless network.