Abstract:
Circuitry, which includes a first switching transistor element having a first gate, a second switching transistor element having a second gate, a third switching transistor element having a third gate, and a fourth switching transistor element having a fourth gate, is disclosed. The first switching transistor element and the third switching transistor element are coupled in series between a first power source and a first downstream circuit. The second switching transistor element and the fourth switching transistor element are coupled in series between a second power source and the first downstream circuit. A voltage swing at the first gate and a voltage swing at the second gate are both about equal to a first voltage magnitude. A voltage swing at the third gate and a voltage swing at the fourth gate are both about equal to a second voltage magnitude.
Abstract:
A DC-DC converter, which provides a converter output voltage using a DC source voltage, is disclosed. The DC-DC converter includes converter control circuitry and a boosting charge pump. The converter control circuitry selects one of a first boost operating mode, a second boost operating mode, and a boost disabled mode based on the DC source voltage. During the boost disabled mode, the boosting charge pump presents a high impedance at a charge pump output of the boosting charge pump. Otherwise, the boosting charge pump provides a charge pump output voltage. During the first boost operating mode, a nominal value of the charge pump output voltage is equal to about one and one-half times the DC source voltage. During the second boost operating mode, a nominal value of the charge pump output voltage is equal to about two times the DC source voltage.
Abstract:
A direct current (DC)-DC converter, which includes a parallel amplifier and a switching supply, is disclosed. The switching supply includes switching circuitry, a first inductive element, and a second inductive element. The parallel amplifier has a feedback input and a parallel amplifier output. The switching circuitry has a switching circuitry output. The first inductive element is coupled between the switching circuitry output and the feedback input. The second inductive element is coupled between the feedback input and the parallel amplifier output.
Abstract:
Circuitry, which includes a linear amplifier, is disclosed. The linear amplifier has a linear amplifier output and includes an input amplifier stage and an output amplifier stage. The output amplifier stage at least partially provides an envelope power supply voltage to a radio frequency (RF) power amplifier (PA) via an envelope power supply output using a selected one of a group of linear amplifier power supply signals. The group of linear amplifier power supply signals includes at least a first bi-directional power supply signal. The input amplifier stage selects the one of the group of linear amplifier power supply signals based on the envelope power supply voltage and a setpoint of the envelope power supply voltage.
Abstract:
A parallel amplifier and an offset capacitance voltage control loop are disclosed. The parallel amplifier has a parallel amplifier output, which is coupled to an envelope tracking power supply output via an offset capacitive element. The offset capacitive element has an offset capacitive voltage. The offset capacitance voltage control loop regulates the offset capacitive voltage, which is adjustable on a communications slot-to-communications slot basis.
Abstract:
A switch mode power supply converter and a feedback delay compensation circuit are disclosed. The switch mode power supply converter has a switching voltage output and provides a switching voltage at the switching voltage output, such that a target voltage for a power amplifier supply voltage at a power amplifier supply output is based on the switching voltage. Further, the switching voltage is based on an early indication of a change of the target voltage. The feedback delay compensation circuit provides the early indication of the change of the target voltage.
Abstract:
Programmable delay circuitry, which includes an input buffer circuit and variable delay circuitry, is disclosed. The variable delay circuitry includes an input stage, a correction start voltage circuit, and a variable delay capacitor. The input buffer circuit is coupled to the input stage, the correction start voltage circuit is coupled to the input stage, and the variable delay capacitor is coupled to the input stage. The programmable delay circuitry is configured to provide a fixed time delay and a variable time delay.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.
Abstract:
This disclosure relates to radio frequency (RF) power converters and methods of operating the same. In one embodiment, an RF power converter includes an RF switching converter, a low-drop out (LDO) regulation circuit, and an RF filter. The RF filter is coupled to receive a pulsed output voltage from the RF switching converter and a supply voltage from the LDO regulation circuit. The RF filter is operable to alternate between a first RF filter topology and a second RF filter topology. In the first RF filter topology, the RF filter is configured to convert the pulsed output voltage from a switching circuit into the supply voltage. The RF filter in the second RF filter topology is configured to filter the supply voltage from the LDO regulation circuit to reduce a ripple variation in a supply voltage level of the supply voltage. As such, the RF filter provides greater versatility.