Abstract:
The disclosure relates to a communication technique of combining a 5G communication system to support a higher data transfer rate than in a 4G system with IoT technology, and a system thereof. The disclosure provides a terminal in a wireless communication system. The terminal includes at least one processor configured to: obtain a codebook set for the terminal; generate uplink signals by using a plurality of codebooks of the codebook set; and control at least one transceiver to transmit the uplink signals to a base station. A first uplink signal of a first resource among the uplink signals is generated based on a codeword of a first codebook among codebooks and a second uplink signal of a second resource adjacent to the first resource among the uplink signals is generated based on a codeword of a second codebook which is different from the first codebook among codebooks.
Abstract:
The present disclosure relates to a communication technique that combines, with IoT technology, 5G communication system for supporting a higher data transfer rate than a 4G system, and a system therefor. The present disclosure can be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety related services, etc. on the basis of 5G communication technologies and IoT related technologies. Disclosed, in the present invention, are a method and an apparatus for determining the size of a transport block in a communication or broadcasting system.
Abstract:
A channel transmission/reception method and an apparatus for transmitting/receiving channels between a base station and a mobile terminal efficiently in a mobile communication supporting massive Multiple Input Multiple Output (MIMO) transmission are provided. The method includes determining a resource to which a Demodulation Reference Signal (DMRS) addressed to a terminal is mapped within a resource block, the DMRS resource being positioned in at least one of a first resource set capable of being allocated for DMRS and a second resource set symmetric with the first resource set on a time axis, and transmitting the DMRS and DMRS allocation information to the terminal.
Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.
Abstract:
A data transmission method and an apparatus in a network supporting coordinated multipoint transmission are provided. The method includes transmitting candidate sets of initial state information used to generate Demodulation Reference Signal (DMRS) scrambling sequences for the transmission points to the UE, and transmitting an indication corresponding to at least one candidate set of initial state information respectively associated with at least one transmission point to the UE, wherein the initial state information is used by the UE to generate DMRS scrambling sequences.
Abstract:
A method for transmitting and receiving a signal in a terminal of a mobile communication system, according to one embodiment of the present specification, comprises the steps of: receiving information of another terminal from the other terminal; transmitting, to a base station, a message requesting allocation of an identifier for the other terminal on the basis of the received information of the other terminal; and receiving, from the base station, the message including the identifier allocated for the other terminal. The provided present invention, according to one embodiment of the present specification, allows only the arbitrary receiver to access the base station and receive data therefrom when a plurality of densely located receivers are neighboring each other. At this point, the other receivers can selectively receive a data stream transmitted to each terminal from data channels received by the arbitrary receiver that accesses the base station. To this end, only the arbitrary terminal accessing at least the base station is enabled to allow feedback of the channel.
Abstract:
The present specification relates to a precoding-related information transmitting or receiving method and apparatus. A precoder-related information receiving method by a user equipment according to an embodiment of the present specification comprises the steps of: transmitting an aperiodic channel state information (CSI) report; receiving a rank indicator and a first precoder indicator from a base station; acquiring a second precoder indicator included in the most recent aperiodic CSI report which corresponds to the rank indicator in the aperiodic CSI reports transmitted by the user equipment; and receiving a signal using the first precoder indicator and the second precoder indicator. According to an embodiment of the present specification, precoding-related information can be effectively transmitted or received.
Abstract:
Various communication techniques and related systems for a fusion between a 5th generation (5G) communication system and Internet of Things (IoT) technology are provided. A user equipment (UE) is required to select a dedicated core network so as to receive a suitable service. In a method for transmitting and receiving a signal, an enhanced Node B (eNB) of a mobile communication system transmits a first request message to a first mobile management entity (MME), receives a reroute command message based on the first request message from the first MME, and transmits a second message to a second MME based on the reroute command message. Herein, the reroute command message contains the first request message, at least one MME identifier, and a UE identifier.
Abstract:
An apparatus and a method of measuring a reference signal for efficient downlink transmission in a mobile communication system are provided. The system includes plural base stations, each having a plurality of antennas distributed in the service area thereof based on a Distributed Antenna System (DAS). A method for a base station to notify a terminal of reference signal measurement information in a mobile communication system comprises determining whether the terminal is in a Rank Indicator/Precoding Matrix Indicator (RI/PMI) disabled mode, selecting, when the terminal is in the RI/PMI disabled mode, the reference signal to be measured by the terminal between a Cell-specific Reference Signal (CRS) and a Channel Status Information Reference Signal (CSI-RS), notifying the terminal of the reference signal measurement information with the selection result, and receiving channel information generated based on the reference signal measurement information from the terminal.
Abstract:
A Channel State Information (CSI) transmission/reception method and an apparatus for transmitting/receiving CSI efficiently in a Coordinated Multi-Point (CoMP) communication system are provided. The CSI transmission method of a terminal for receiving Joint Transmission (JT) from a first Transmission Point (TP) and a second TP includes receiving a first CSI Reference Signal (CSI-RS) corresponding to the first TP, receiving a second CSI-RS corresponding to the second TP, generating an aggregated CSI corresponding to the first and second CSI-RSs, and transmitting the aggregated CSI, wherein generating an aggregated CSI comprising creating the aggregated CSI with a transmission timing of the aggregated CSI. The CSI transmission/reception method and apparatus is capable of transmission CSI efficiently in the CoMP system.