Abstract:
A random access method and an apparatus of a terminal for performing random access procedure to multiple base stations in parallel in a Long Term Evolution (LTE) system supporting dual connectivity are provided. The method includes determining whether a first preamble transmission to a first cell of a first base station is overlapped with a second preamble transmission to a second cell of a second base station in a time domain, determining, when the first preamble transmission is overlapped with the second preamble transmission in the time domain, whether a sum of transmit powers calculated for the first and second preamble transmissions is greater than a maximum allowed transmit power of the terminal, and controlling, when the sum of the first and second preamble transmit powers is greater than the maximum allowed transmit power, the transmit power calculated for the second preamble transmission.
Abstract:
The present invention provides a method for controlling access of a terminal if the terminal accesses from a wireless LAN network to a mobile communication network, when the mobile communication network (for example, UMTS, LTE and the like) and the wireless LAN network are linked in a wireless communication system. Furthermore, the present invention provides a method for transmitting information on connectable peripheral wireless LAN networks. Thus, the present invention can reduce a load of a network since the network can control the access of a terminal, and can reduce unnecessary power consumption and solve a connection delay problem by providing a valid wireless LAN network list to the terminal.
Abstract:
A communication method and system for supporting a high data transmission rate is provided. The method and system fuses 5G communication systems with IoT technology to transmit data at a higher rate than 4G systems. The communication method and system is applied to intelligent services, based on 5G communication technology and IoT related technology, for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security, safety-related services, etc. A method and apparatus is provided that increases the amount of MBMS, according to the demand increase in MBMS, using an MBMS dedicated carrier, in a mobile communication system.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The vehicle-to-everything (V2X) communication method by a terminal in a wireless communication system includes transmitting, to a base station, a first message including assistance information associated with a semi-persistent scheduling (SPS) for the V2X communication, receiving, from the base station, a second message including SPS configuration information for the V2X communication, receiving, from the base station, a third message including downlink control information (DCI) associated with activation of the SPS for the V2X communication, and transmitting, to another terminal, data based on the SPS configuration information and the DCI.
Abstract:
A method of operating a mobile terminal for network interworking is provided. The method includes receiving at the mobile terminal a first parameter from a first wireless communication network indicating a preference for offloading a new or current data flow to another network, the first parameter comprising a value within a first range. The method further comprises obtaining at the mobile terminal a random or pseudorandom value within a second range that at least partially overlaps the first range. The method further comprises determining whether to initiate or maintain at least one data flow between the mobile terminal and the first network or another network according to the first parameter and the random or pseudorandom value.
Abstract:
A method and an apparatus in a mobile communication system are provided. The method by a terminal in a mobile communication system includes receiving first information for activating a secondary cell (SCell) from a base station, activating the SCell based on the first information, starting a timer associated with the SCell, restarting, if second information for the activated SCell is received from the base station, the timer associated with the SCell, and if the timer expires, applying by the terminal, one or more corresponding actions for deactivating the SCell no later than in a predefined subframe. The one or more corresponding actions include at least one of preventing from transmitting a sounding reference signal (SRS) on the SCell, and preventing from reporting at least one of a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI), and a precoder type indicator (PTI) for the SCell
Abstract:
A Short Message Service (SMS) delivery method and apparatus is provided for delivering an SMS message efficiently by selecting a network domain to attach to according to the service provided to a Mobile Station (MS) by the mobile operator network. An SMS delivery method of the present invention includes receiving, at a network node, an Attach/Routing Area Update (RAU) Request message including a parameter indicating an attach/update type and SMS-only service, and transmitting, when SMS in a Serving General Packet Radio Service (GPRS) Support Node (SGSN) is supported at the core network node, to the mobile station an Attach Accept message including a parameter indicating that SMS in SGSN is supported. The SMS delivery method of the present invention is capable of delivering SMS message efficiently in the wireless communication system.
Abstract:
A method for managing system information using a valid period timer includes receiving system information from a base station, checking whether information related to the management of a valid timer time regarding system information is included in the system information, and determining the valid timer time regarding the system information according to the checking result, and starting a timer by employing the determined valid timer time and managing the system in formation. A terminal a controller configured to control the transceiver to receive system information from a base station, check whether information related to management of a valid timer time regarding system information is included in the system information, determine the valid timer time regarding the system information according to the checking result, start a timer set for the determined valid timer time, and manage the system information.
Abstract:
A data transmission method and an apparatus to communicate data on multiple carriers in the mobile communication system are provided. A random access method of a terminal in a mobile communication system including primary and secondary cells operating on multiple carriers according to the present invention includes communicating data after random access in the primary cell, receiving, when the random access is triggered in the secondary cell, information for use in the secondary cell random access from the primary cell, transmitting a preamble in the secondary cell based on the received information, monitoring the primary cell to receive a Random Access Response for the secondary cell, and applying, when the Random Access Response for the secondary cell is received, the information carried in the Random Access Response to the secondary cell in which the preamble has been transmitted.
Abstract:
A communication method and system for supporting a high data transmission rate fuse 5G communication systems with IoT technology to transmit data at a high rate after 4G systems. The method for a terminal in a wireless communication system supporting carrier aggregation includes receiving a control message including indication information, the indication information indicating that physical uplink control channel (PUCCH) feedback for at least one secondary cell (SCell) is transmitted on a SCell; identifying whether the SCell is configured to the terminal and is activated; and if the SCell is configured to the terminal and is activated, obtaining Type 2 power headroom information for the SCell.