Abstract:
Devices that include a near field transducer (NFT) including a crystalline plasmonic material having crystal grains and grain boundaries; and nanoparticles disposed in the crystal grains, on the grain boundaries, or some combination thereof, wherein the nanoparticles are oxides of, lanthanum (La), barium (Ba), strontium (Sr), erbium (Er), hafnium (Hf), germanium (Ge), or combinations thereof; nitrides of zirconium (Zr), niobium (Nb), or combinations thereof; or carbides of silicon (Si), aluminum (Al), boron (B), zirconium (Zr), tungsten (W), titanium (Ti), niobium (Nb), or combinations thereof.
Abstract:
Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
Abstract:
Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
Abstract:
A method of forming a near field transducer (NFT) layer, the method including depositing a film of a primary element, the film having a film thickness and a film expanse; and implanting at least one secondary element into the primary element, wherein the NFT layer includes the film of the primary element doped with the at least one secondary element.
Abstract:
Methods of forming a NFT the methods including forming a hard mask positioned over at least a portion of the rod, the hard mask including at least one layer; patterning a resist mask over the hard mask, the resist mask having an edge positioned over at least a portion of the rod; etching a portion of the hard mask to expose a back edge of the rod and to form a back edge of the hard mask, wherein the back edge of the rod is equivalent to the back edge of the peg; and wherein a forward portion of the rod which is the portion of the rod forward of the back edge is covered by the hard mask; forming a disc mask including a void configured to form a disc of a NFT, the disc mask being formed over at least a portion of the hard mask so that the exposed back edge of the rod is within the void configured to form the disc; etching an area exposed in the void of the disc mask to remove both a rear portion of the rod and the surrounding dielectric up to the back edge of the hard mask edge; depositing a disc material in the etched void, wherein the back edge of the hard mask defines the front edge of the disc and the back edge of the rod is in contact with the front edge of the disc; and polishing the deposited disc material to form a top surface substantially planar with the top of the forward rod portion.
Abstract:
A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a carbon interlayer positioned between the NFT and the at least one cladding layer.
Abstract:
A method including depositing a plasmonic material at a temperature of at least 150° C.; and forming at least a peg of a near field transducer (NFT) from the deposited plasmonic material.
Abstract:
Devices having air bearing surfaces (ABS), the devices include a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the disc material has a first real part of the permittivity and a peg material has a second real part of the permittivity and the second real part of the permittivity is not greater than the first real part of the permittivity.
Abstract:
A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including oxides of yttrium, oxides of scandium, oxides of lanthanoids, oxides of actionoids, oxides of zinc, or combinations thereof.