摘要:
A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a≦75 at %, b≦75 at %, and c≦63 at %), or formed of an alloy having a body-centered cubic crystal structure.
摘要翻译:磁阻装置包括磁化固定层,磁化自由层,形成在磁化固定层和磁化自由层之间的非磁性中间层,以及允许感测电流在基本垂直于堆叠平面的方向上流动的电极,包括 磁化钉扎层,非磁性中间层和无磁化层。 磁化固定层和磁化自由层中的至少一个基本上由式FeaCobNic(其中a + b + c = 100原子%,a≦̸ 75原子%,b≦̸ 75在 %,c≦̸ 63at%),或由具有体心立方晶体结构的合金形成。
摘要:
There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
摘要:
A spin valve type magnetoresistive effect element for vertical electric conduction includes a magnetoresistive effect film in which a resistance adjustment layer made of a material containing conductive carriers not more than 1022/cm3 is inserted. Thus the resistance value of a portion in change of spin-relied conduction is raised to an adequate value, thereby to increase the resistance variable amount.
摘要:
A spin valve type magnetoresistive effect element for vertical electric conduction includes a magnetoresistive effect film in which a resistance adjustment layer made of a material containing conductive carriers not more than 1022/cm3 is inserted. Thus the resistance value of a portion in change of spin-relied conduction is raised to an adequate valve, thereby to increase the resistance variable amount.
摘要:
A spin valve type magnetoresistive effect element for vertical electric conduction includes a magnetoresistive effect film in which a resistance adjustment layer made of a material containing conductive carriers not more than 1022/cm3 is inserted. Thus the resistance value of a portion in change of spin-relied conduction is raised to an adequate value, thereby to increase the resistance variable amount.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer, and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer. Alternatively, the concentration of oxygen in the first layer may have a two-dimensional fluctuation, and a first region where the concentration of oxygen is equal to or higher than 40 atomic % and a second region where the concentration of oxygen is equal to or lower than 35 atomic % may be provided in the first layer.
摘要:
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
摘要:
There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer, and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer. Alternatively, the concentration of oxygen in the first layer may have a two-dimensional fluctuation, and a first region where the concentration of oxygen is equal to or higher than 40 atomic % and a second region where the concentration of oxygen is equal to or lower than 35 atomic % may be provided in the first layer.
摘要:
A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer. Alternatively, the concentration of oxygen in the first layer may have a two-dimensional fluctuation, and a first region where the concentration of oxygen is equal to or higher than 40 atomic % and a second region where the concentration of oxygen is equal to or lower than 35 atomic % may be provided in the first layer.