摘要:
Devices and methods for device fabrication include forming a gate structure with a sacrificial material. Silicided regions are formed on source/drain regions adjacent to the gate structure or formed at the bottom of trench contacts within source/drain areas. The source/drain regions or the silicided regions are processed to build resistance to subsequent thermal processing and adjust Schottky barrier height and thus reduce contact resistance. Metal contacts are formed in contact with the silicided regions. The sacrificial material is removed and replaced with a replacement conductor.
摘要:
A quarter-gap p-type field effect transistor (PFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a gate metal layer located over the high-k dielectric layer, the gate metal layer including titanium nitride and having a thickness of about 20 angstroms; and a metal contact formed over the gate stack. A quarter-gap n-type field effect transistor (NFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a first gate metal layer located over the high-k dielectric layer, the first gate metal layer including titanium nitride; and a metal contact formed over the gate stack.
摘要:
A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a high-k dielectric having a high dielectric constant greater than approximately 3.9, a germanium (Ge) material layer interfacing with the high-k dielectric, and a conductive electrode layer disposed above the high-k dielectric or the Ge material layer. The gate stack optimizes a shift of the flatband voltage or the threshold voltage to obtain high performance in p-FET devices.
摘要:
A quarter-gap p-type field effect transistor (PFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a gate metal layer located over the high-k dielectric layer, the gate metal layer including titanium nitride and having a thickness of about 20 angstroms; and a metal contact formed over the gate stack. A quarter-gap n-type field effect transistor (NFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a first gate metal layer located over the high-k dielectric layer, the first gate metal layer including titanium nitride; and a metal contact formed over the gate stack.
摘要:
A method of forming a transistor device includes forming an interfacial layer on a semiconductor substrate, corresponding to a region between formed doped source and drain regions in the substrate; forming a high dielectric constant (high-k) layer on the interfacial layer, the high-k layer having a dielectric constant greater than about 7.5; forming a doped metal layer on the high-k layer; performing a thermal process so as to cause the doped metal layer to scavenge oxygen atoms diffused from the interfacial layer such that a final thickness of the interfacial layer is less than about 5 angstroms (Å); and forming a metal gate material over the high-k dielectric layer.
摘要:
A method of forming a transistor device includes forming an interfacial layer on a semiconductor substrate, corresponding to a region between formed doped source and drain regions in the substrate; forming a high dielectric constant (high-k) layer on the interfacial layer, the high-k layer having a dielectric constant greater than about 7.5; forming a doped metal layer on the high-k layer; performing a thermal process so as to cause the doped metal layer to scavenge oxygen atoms diffused from the interfacial layer such that a final thickness of the interfacial layer is less than about 5 angstroms (Å); and forming a metal gate material over the high-k dielectric layer.
摘要:
A high-k metal gate stack and structures for CMOS devices and a method for forming the devices. The gate stack includes a germanium (Ge) material layer formed on the semiconductor substrate, a diffusion barrier layer formed on the Ge material layer, a high-k dielectric having a high dielectric constant greater than approximately 3.9 formed over the diffusion barrier layer, and a conductive electrode layer formed above the high-k dielectric layer.
摘要:
A method of simultaneously fabricating n-type and p type field effect transistors can include forming a first replacement gate having a first gate metal layer adjacent a gate dielectric layer in a first opening in a dielectric region overlying a first active semiconductor region. A second replacement gate including a second gate metal layer can be formed adjacent a gate dielectric layer in a second opening in a dielectric region overlying a second active semiconductor region. At least portions of the first and second gate metal layers can be stacked in a direction of their thicknesses and separated from each other by at least a barrier metal layer. The NFET resulting from the method can include the first active semiconductor region, the source/drain regions therein and the first replacement gate, and the PFET resulting from the method can include the second active semiconductor region, source/drain regions therein and the second replacement gate.
摘要:
Devices and methods for device fabrication include forming a gate structure with a sacrificial material. Silicided regions are formed on source/drain regions adjacent to the gate structure or formed at the bottom of trench contacts within source/drain areas. The source/drain regions or the silicided regions are processed to build resistance to subsequent thermal processing and adjust Schottky barrier height and thus reduce contact resistance. Metal contacts are formed in contact with the silicided regions. The sacrificial material is removed and replaced with a replacement conductor.
摘要:
Devices and methods for device fabrication include forming a gate structure with a sacrificial material. Silicided regions are formed on source/drain regions adjacent to the gate structure or formed at the bottom of trench contacts within source/drain areas. The source/drain regions or the silicided regions are processed to build resistance to subsequent thermal processing and adjust Schottky barrier height and thus reduce contact resistance. Metal contacts are formed in contact with the silicided regions. The sacrificial material is removed and replaced with a replacement conductor.