Abstract:
An ultrasonic enhanced-contrast imager and method includes an ultrasonic probe for transmitting and receiving an ultrasonic wave to and from an organism, a transmitting section for transmitting an ultrasonic signal to the ultrasonic probe, a receiving section for processing a response signal ultrasonic wave received by the ultrasonic probe, a filter for extracting a specific frequency component from the processed response signal, and a setting control section for setting a pass frequency band of the filter on the basis of a frequency band of the response signal from a contrast medium injected to the organism. A control section controls the operation of the filter in the set pass band, and the setting control section sets the center frequency of the pass band of the filter to be greater than f0 and less than 2f0, where f0 is the average frequency of the ultrasonic signal transmitted to the ultrasonic probe.
Abstract:
A tube-end device for fire extinguishment jets and sprays pressurized and fed water, seawater, or aqueous fire-extinguishing agent from a tube end. The tube-end device for fire extinguishment is provided with: an induction electrode unit disposed in an emission space side of a nozzle unit positioned inside the tube end; a water-side electrode unit disposed at a position of the interior of a tube main body in contact with fire-extinguishing water; a voltage applying device which applies an external electric field, which is generated by applying a voltage between the induction electrode unit and the water-side electrode unit, to the water, seawater, or fire-extinguishing agent in the process of jetting from the nozzle unit, electrically charges jetted particles, and emit the particles; and a battery which supplies power to the voltage applying device.
Abstract:
Provided is an integrated gas panel apparatus which has excellent responsiveness, stabilizes gas concentration, and furthermore, can keep a conventional panel shape as it is. A panel body (2) comprises at least a main flow channel block body (32) for forming a main flow channel (R2), and a branch flow channel block body (31) for forming a branch flow channel (R1). The branch flow channel block bodies (31) are arranged on the both right and left sides to face each other by having the main flow channel block body (32) at the center.
Abstract:
An exposure apparatus for exposing a substrate to light via a reticle. The apparatus includes a projection optical system configured to project a pattern of the reticle onto the substrate, a stage configured to hold the substrate, a light transmitting member interposed between the stage and an end face of the projection optical system, a first fluid filling system configured to fill, with a first fluid, a first space between the light transmitting member and the end face of the projection optical system, and a second fluid filling system configured to fill, with a second fluid, a second space between the light transmitting member and the substrate. The first fluid is an inorganic fluid having a refractive index higher than a refractive index of pure water, and the second fluid is an inorganic fluid having a refractive index higher than a refractive index of pure water.
Abstract:
A humidifier and a method for producing it can reduce gas leakage through inside the surfaces of humidifying membranes or through interfaces between the humidifying membranes and separators. The humidifier includes water permeable humidifying membranes and gas separators each having one or two channels opened at least one side in a direction of lamination, through which at least one of a dry gas and a wet gas is caused to flow. A humidifying membrane, a gas separator, a humidifying membrane and a gas separator are repeatedly laminated one over another in this order, or a gas separator, a humidifying membrane and a gas separator are repeatedly laminated one over another in this order. Each gas separator has a frame-shaped portion surrounding the one or two channels, and that portion of each humidifying membrane which, when laminated, faces the frame-shaped portion of a corresponding gas separator is filled with a resin.
Abstract:
The present invention provides an ultrasonic imaging system capable of extracting structure-emphasized image data in which the structure of a tissue in a living body is emphasized and texture-emphasized image data in which a texture pattern coming from properties of a tissue in a living body is emphasized from B-mode image data, and obtaining a synthesized image obtained by weighting and combining the two extracted image data pieces. An ultrasonic imaging system has: a structure extractor for extracting structure-emphasized image data in which a structure of a tissue in the living body is emphasized from B-mode image data of the living body; a texture pattern extractor for extracting texture-emphasized image data in which a texture pattern coming from properties of a tissue in the living body is emphasized; an image synthesizer for obtaining a synthesized image by weighting and combining the structure-emphasized image data and the texture-emphasized image data; and a display for displaying at least one of the structure-emphasized image data, the texture-emphasized image data, and the synthesized image.
Abstract:
An ultrasonic enhanced-contrast imager includes an ultrasonic probe for transmitting an ultrasonic wave to an organism and receiving an ultrasonic wave from the organism, a transmitting section for transmitting an ultrasonic signal to the ultrasonic probe, a receiving section for processing a response signal ultrasonic wave received by the ultrasonic probe, a filter for extracting a specific frequency component from the processed response signal, a setting control section for setting a pass frequency band of the filter on the basis of a frequency band of the response signal from a contrast medium injected to the organism, and a control section for controlling the operation of the filter in the set pass band.
Abstract:
An exposure apparatus for exposing a substrate to light via a reticle in a vacuum atmosphere includes a projection optical system configured to project a pattern of the reticle onto the substrate; a stage configured to hold one of the reticle and the substrate and to move; first and second partitions configured to define an exhaust space between a first space which accommodates at least a part of the projection optical system and a stage space which accommodates the stage, the first partition including a first opening configured to make the light pass between the first space and the exhaust space, and the second partition including a second opening configured to make the light pass between the exhaust space and the stage space; a first supply system configured to supply fluid into the stage space; and a first exhaust system configured to recover fluid from the stage space through the second opening and the exhaust space.
Abstract:
The present invention relates to a gas supply device having a compact configuration that enables prevention of vaporized gas by requisite minimum heating means from being liquefied again and an installation area to be considerably reduced. The gas supply device is provided with: a tank configured to retain material liquid; and a mass flow controller that is connected to an inside of the tank through a first valve unit, and controls a flow rate of gas resulting from vaporizing the material liquid, in which inside an outer wall of the tank, an internal flow path is formed, and the internal flow path is provided with a generated gas lead-out line provided with: a first valve flow-in flow path connecting the inside of the tank and a first inlet port; and a first valve flow-out flow path connecting a first outlet port and an introduction port of the mass flow controller.
Abstract:
An output power of the internal combustion engine (1) is transmitted to a drive wheel via a torque converter (2B) having a pump impeller and a turbine runner. A lockup clutch (2C) directly connects the pump impeller and the turbine runner during a coast running of a vehicle. When the accelerator pedal is slightly depressed during a coast running of a vehicle in a fuel cut-off state, the lockup clutch (2C) disengages. In addition, fuel recovery of the internal combustion engine (1) is suppressed until the engaging pressure of the lockup clutch (2C) decreases, thereby preventing a vehicle speed change caused by an output power increase of the internal combustion engine (1) before the lockup clutch (2C) substantially disengages.