Abstract:
The invention concerns a method of producing an MFC film comprising reinforcement fibers, which film show excellent oxygen barrier properties and is easy to handle. The method of manufacturing the film comprises the steps of: —providing a suspension comprising a first microfibrillated cellulose (MFC) in an amount of at least 50 weight %, reinforcement fibers in an amount of at least 5 weight %, all percentages calculated on the total solid content of said suspension, and a formation aid, —mixing said suspension to form a mixture, —forming a fibrous web from the mixture, and —dewatering and/or drying said fibrous web to form a film having a basis weight of less than 40 g/m2, a specific formation number of below 0.45 g0.5/m2, and an Oxygen Transmission Rate (OTR) value of below 100 ml/m2/per 24 hours, preferably of below 50 ml/m2 per 24 hours at 50% relative humidity. The invention further discloses a film and use of the film in food or liquid packaging applications.
Abstract:
A corrugated fiberboard comprising cellulosic fibers, wherein said corrugated fiberboard has at least one of a geometrical tensile index in the range of from 32 to 65 Nm/g, a fracture toughness index in the range of from 4 to 24 Jm/kg, and a ring crush index in the range of from 5 to 10 Nm/g5 measured at relative humidity of 85% RH; wherein the cellulosic fibers comprises a mixture of less refined fibers having a Schopper-Riegler (SR) value in the range of 15 to 28 and microfibrillated cellulose fibers, wherein mixture comprises said microfibrillated cellulose in a range of from 1% to 5% by weight of the dry content of the cellulosic fibers.
Abstract:
The invention relates to a ground cover in the form of a mulch, comprising a paper substrate originating from fibre-bearing pulp, preferably emanating from lignocellulosic material, which has been web-formed or sheet-formed. Paper based mulches face problems with biodegradability and microbial attacks, mechanical strength and cost. The solution according to the invention is that the fibres have been coated with one or more minerals, e.g., calcium carbonate, and the mulch comprises one or more functional agents, e.g., a colorant. Further, the mineral coated onto or into the fibres predominantly show up when precipitated in the form of one or more metal carbonates.
Abstract:
A method for manufacturing a film, wherein said film has a basis weight of less than 50 g/m2 and wherein the density of the film is higher than 750 kg/m2 comprising the steps of: providing a suspension comprising microfiber Hated cellulose (MFC); forming a web of said suspension on a porous wire, microfibrillated cellulose (MFC); surface sizing said web, wherein the web, at the beginning of the surface sizing step, has a moisture content in the rage from 10 to 50 wt-%; drying said surface sized web to a final moisture content of between 0.1-20 wt-% to form said film.
Abstract:
A method for the production of a film from a fibrous web, wherein the method comprises the steps of: providing a fibrous suspension comprising a microfibrillated cellulose, wherein the content of the microfibrillated cellulose of said suspension is in the range of 60 to 99.9 weight-% based on total dry solid content, adding an amphoteric polymer to said suspension to provide a mixture of said microfibrillated cellulose and said amphoteric polymer, providing said mixture to a substrate to form a fibrous web, wherein the amount of amphoteric polymer in said mixture is in the range of 0.1 to 20 kg/metric ton based on total dry solid content; and dewatering said fibrous web to form a film having a basis weight of less than 40 g/m2 and a density in the range of from 700 to 1000 kg/m3
Abstract:
Method for producing microfibrillated cellulose(MFC), wherein the method comprising the steps of: Pre-treating of chemical pulp, such that, the pulp reaches a Schopper-Riegler (SR) value above 50, and refining the pulp, at a consistency of 3-6%, in a refiner with refiner blades, wherein the height of the refiner blades is in the range 2-3 mm.
Abstract:
A hydrophobically sized fibrous web layer, preparation of a fibrous web or a fiber-based coating, a multilayer board product having at least a middle layer formed of said fibrous web, as well as use of a heat-sensitive surfactant for said methods and products, whereby microfibrillated cellulose (MFC) and hydrophobic size are brought to a foam with water and the heat-sensitive surfactant, the foam is supplied to a forming fabric of a paper or board machine, dewatered by suction of air through the forming fabric, and dried to a web product. Alternatively the foam may be supplied onto a premade fibrous web and dried to form a coating layer. The hydrophilic functionality of the surfactant contained in the web may be destroyed by heating. Pulp of a greater fiber length, such as CTMP, may be included, to provide improved wet and dry tensile strength for the paper and board products.
Abstract:
A substantially dry composite material comprising a nanofibrillated polysaccharide and two or more additives, wherein the composite nanofibrillated polysaccharide is a microfibrillated cellulose and wherein the additives are lime milk and carbon dioxide, wherein the additives are allowed to react with each other and forming a precipitated calcium carbonate on the nanofibrillated polysaccharide, thereby forming a composite product comprising precipitated calcium carbonate and nanofibrillated polysaccharide.
Abstract:
A ply for a paper and paperboard made from a ply substrate material, wherein the ply comprises a hybrid material, in an amount of 1-25 wt-% of the ply, wherein the hybrid material is introduced into a target suspension of the short circulation of a fibrous web forming process of a fibrous web machine, in an in-line process, wherein said target suspension forms the ply substrate material, and the hybrid material comprises an alkaline earth carbonate precipitated onto or into fibers or fibrils of a nanofibrillated polysaccharide.
Abstract:
A hydrophobically sized fibrous web layer, preparation of a fibrous web or a fibre-based coating, a multiplayer board product having at least a middle layer formed of said fibrous web, as well as use of a heat-sensitive surfactant for said methods and products, whereby microfibrillated cellulose (MFC) and hydrophobic size are brought to a foam with water and the heat-sensitive surfactant, the foam is supplied to a forming fabric of a paper or board machine, dewatered by suction of air through the forming fabric, and dried to a web product. Alternatively the foam may be supplied onto a premade fibrous web and dried to form a coating layer. The hydrophilic functionality of the surfactant contained in the web may be destroyed by heating. Pulp of a greater fibre length, such as CTMP, may be included, to provide improved wet and dry tensile strength for the paper and board products.