摘要:
A computer disk drive (22) having a write head (52) which includes a coil (38), a photoresist insulation layer (66) formed on the coil (38), and an insulation shell layer (102) which is formed on the photoresist insulation layer (66). In the first preferred embodiment (100), the top pole (42) of the write head (52) is formed on the insulation shell layer (102).In the second preferred embodiment (200), the disk drive write gap (76) is formed on the insulation shell layer (102) and the top pole (42) of the write head (52) is formed on the write gap (76).The insulation shell layers (102) in both embodiments are preferably made of dielectric materials (103).Methods of fabrication for these embodiments are also disclosed.
摘要:
In at least one embodiment, the apparatus of the invention is a read sensor which includes a shield, a sensor element, a read gap positioned between the shield and the sensor element, and an extra gap positioned between the shield and the sensor element and adjacent the read gap. The sensor element is positioned in a sensor layer. With the sensor element and the shield separated by only the relatively thin gap layer, high sensitivity of the sensor element is obtained. Further, by placing the relatively thick extra gap between the shield and the sensor layer and about the sensor element, the potential for shorting is minimized. The shield can be planarized to keep the read gap and the sensor layer at, and about, the sensor element substantially planar. This, in turn, results in improved control of sensor track widths and greatly reduces the potential for pooling of photoresist. In at least one embodiment, the method of the invention is for fabricating a read sensor and includes depositing a read gap onto a planarized shield, depositing an extra gap adjacent an exposed portion of the read gap, and depositing a sensor element onto the exposed portion of the first gap and adjacent to the extra gap.
摘要:
A preferred method of the present invention provides an improved thin film for carrying magnetic flux. With the preferred method, the magnetic thin film may be formed by depositing Fe by reactive sputtering using N2 to form a thin film comprising &agr;-Fe and &ggr;-Fe4N. With this method, the relative percentage of &ggr;-Fe4N in the deposited film is increased to provide expanding lattice constants for both the &agr;-Fe and the &ggr;-Fe4N. Increasing &ggr;-Fe4N increases resistivity while expanding lattice constants to provide improved coercivity at higher resistivity. Increasing the percentage of &ggr;-Fe4N to provide expanding lattice constants for both the &agr;-Fe and the &ggr;-Fe4N may be accomplished by adjusting sputtering power, N2 gas percentage, a flow rate of N2, and substrate bias. In some embodiments, high sputtering power of about 3-4 kW with about 15-30 percent of N2 may be used to sputter FeX, where X is selected from the group consisting of Rh, Ta, Hf, Al, Zr, Ti, Ru, Si, Cr, V, Si, Sr, Nb, Mo, Ru, and Pd, to provide expanding &agr;-Fe and &ggr;-Fe2N lattice constants. In some embodiments, FeXN films having resistivity values greater than about 50 &mgr;&OHgr;cm, 80 &mgr;&OHgr;cm, 100 &mgr;&OHgr;cm, 115 &mgr;&OHgr;cm, or more, for coercivity values less than about 10 Oe, 5 Oe, or 3 Oe are possible, for values of Bs greater than around 12 kG to 17 kG. Embodiments may be used for pole or shield structures in magnetic heads for data storage and retrieval apparatuses to improve high frequency performance.
摘要:
The apparatus of the present invention is embodied in a magnetic field sensor having a magnetoresistive element, a magnetic bias layer for biasing the magnetoresistive element with a magnetic field, and an electrical insulator positioned between the magnetic bias layer and the magnetoresistive element. The insulator prevents the flow of electrical current between the magnetoresistive element and the magnetic bias layer and at least a portion of the insulator allows passage of the magnetic field from the magnetic bias layer to the magnetoresistive element such that the magnetoresistive element is biased. The method of the present invention is embodied in a method for fabricating a magnetic field sensor having the steps of forming a magnetoresistive element, forming a lower insulator with a main section and an end section over at least a portion of the magnetoresistive element, forming a magnetic bias layer over the main section of the lower insulator, and forming an upper insulator over the magnetic bias layer and over the end section of the lower insulator, such that the magnetic bias layer is electrically insulated from the magnetoresistive element.
摘要:
The present invention provides a thin film write head having an improved laminated flux carrying structure and method of fabrication. The preferred embodiment provides laminated layers of: high moment magnetic material, and easily aligned high resistivity magnetic material. In the preferred embodiment, the easily aligned laminating layer induces uniaxial anisotropy, by exchange coupling, to improve uniaxial anisotropy in the high moment material. This allows deposition induced uniaxial anisotropy by DC magnetron sputtering and also provides improved post deposition annealing, if desired. It is preferred to laminate FeXN, such as FeRhN, or other crystalline structure material, with an amorphous alloy material, preferably Co based, such as CoZrCr. In the preferred embodiment, upper and lower pole structures may both be laminated as discussed above. Such laminated structures have higher Bs than structures with insulative laminates, and yokes and pole tips and may be integrally formed, if desired, because flux may travel along or across the laminating layers. The preferred embodiment of the present invention improves soft magnetic properties, reduces eddy currents, improves hard axis alignment while not deleteriously affecting the coercivity, permeability, and magnetostriction of the structure, thus allowing for improved high frequency operation.
摘要:
A perpendicular magnetic recording (PMR) transducer is provided. The PRM transducer includes a PMR pole having a top, a bottom, and at least one sidewall, the bottom having a bottom width, the top having a top width bigger than the bottom width. The PRM transducer further includes an intermediate layer adjacent to the at least one sidewall, a write gap on the PMR pole, the write gap including a first layer on the PMR pole, the first layer including a planarization stop layer, and a shield on the write gap.
摘要:
A magnetic write head having a tapered trailing edge and having a magnetic layer formed over a trailing edge of the write pole at a location recessed from the ABS, the magnetic layer being separated from the trailing edge of the write pole by a thin non-magnetic layer. The thin non-magnetic layer is preferably sufficiently thin that the magnetic layer can function as a portion of the write pole in a region removed from the ABS. A trailing magnetic shield is formed over the write pole and is separated from the write pole by a non-magnetic trailing gap layer. A non-magnetic spacer layer can be formed over the magnetic layer to provide additional separation between the magnetic layer and the trailing magnetic shield.
摘要:
A magnetic write head having a write pole with a tapered trailing edge. The write head has a non-magnetic step layer and a non-magnetic bump formed on the front edge of the magnetic step layer. A non-magnetic trailing gap layer is formed over the tapered trailing edge of the write pole and over the non-magnetic bump and over the non-magnetic step layer. A magnetic trailing shield is formed over at least a portion of the non-magnetic gap layer.
摘要:
A method and system for fabricating a perpendicular magnetic recording head, and the head so formed, are described. The method includes depositing an underlayer directly on an insulating layer. The underlayer preferably includes at least one of a nonferromagnetic metal, silicon oxide, and silicon nitride. A pole layer, which has a pole removal rate, is provided on the underlayer. The method and system further include forming a perpendicular magnetic recording pole from the pole layer. The perpendicular magnetic recording pole has a top and a bottom that is narrower than the top. The process of forming the perpendicular magnetic recording pole further includes removing a portion of the pole layer such that a pole removal rate for the pole layer is less than or substantially equal to a removal rate of the underlayer during the removing step.
摘要:
A method of fabricating a bias structure of a magnetoresistive read head for a magnetoresistive sensor stack formed on a substrate includes forming an underlayer and forming a bias layer over the underlayer. The method further includes forming a dusting layer directly below at least one of the underlayer or the bias layer and between the bias layer and the magnetoresistive sensor stack. The dusting layer includes discontinuous, nano-sized islands.