Abstract:
A computationally efficient, adaptive multistage Wiener filter employs two modules, a linear filter module that operates at the input data rate and an update module that operates at a plurality of rates but performs many calculations at only the update rate. This filter is especially useful when the channel conditions vary slowly so that the filter's update rate can be considerably less than the input data rate. Separating the calculations, preferably performing appropriate calculations at different rates and preferably substituting scalar operations for vector operations can provide improved computational efficiency while maintaining high levels of performance.
Abstract:
A computationally efficient, adaptive multistage Wiener filter employs two modules, a linear filter module that operates at the input data rate and an update module that operates at a plurality of rates but performs many calculations at only the update rate. This filter is especially useful when the channel conditions vary slowly so that the filter's update rate can be considerably less than the input data rate. Separating the calculations, preferably performing appropriate calculations at different rates and preferably substituting scalar operations for vector operations can provide improved computational efficiency while maintaining high levels of performance.
Abstract:
An electrical junction that includes a semiconductor (e.g., C, Ge, or an Si-based semiconductor), a conductor, and an interface layer disposed therebetween. The interface layer is sufficiently thick to depin a Fermi level of the semiconductor, yet sufficiently thin to provide the junction with a specific contact resistance of less than or equal to approximately 1000 Ω-μm2, and in some cases a minimum specific contact resistance.
Abstract:
An electrical switching device includes a semiconductor having a channel therein which is proximate to at least on channel tap in an extension region and also to a gate. A conductor (e.g., a metal) is disposed proximate to the extension region but is electrically isolated from both the extension region and the gate (e.g., through the use of one or more insulators). The conductor has a workfunction outside of the bandgap of a semiconductor in the extension region and therefore includes a layer of charge in the extension region. The magnitude and polarity of this layer of charge is controlled through selection of the metal, the semiconductor, and the insulator.
Abstract:
A transistor having at least one passivated Schottky barrier to a channel includes an insulated gate structure on a p-type substrate in which the channel is located beneath the insulated gate structure. The channel and the insulated gate structure define a first and second undercut void regions that extend underneath the insulated gate structure toward the channel from a first and a second side of the insulated gate structure, respectively. A passivation layer is included on at least one exposed sidewall surface of the channel and metal source and drain terminals are located on respective first and second sides of the channel, including on the passivation layer and within the undercut void regions beneath the insulated gate structure. At least one of the metal source and drain terminals comprises a metal that has a work function near a valence band of the p-type substrate.
Abstract:
An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
Abstract:
A wireless receiver receives location pilots embedded in received symbols and uses the location pilots to detect the first path for every base station the network has designated for the receiver to use in time of arrival estimation. The receiver preferably applies matching pursuit strategies to offer a robust and reliable identification of a channel impulse response's first path. The receiver may also receive and use estimation pilots as a supplement to the location pilot information in determining time of arrival. The receiver can use metrics characteristic of the channel to improve the robustness and reliability of the identification of a CIR's first path. With the first path identified, the receiver measures the time of arrival for signals from that path and the receiver determines the observed time difference of arrival (OTDOA) to respond to network requests for OTDOA and position determination measurements.
Abstract:
An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
Abstract:
Techniques for reducing the specific contact resistance of metal-semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal-group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.