Abstract:
A method for applying a coating to an implantable device is disclosed. The method includes positioning an implantable device relative to an ultrasonic material delivery apparatus. The implantable device is rotated at a relative speed. The relative speed may be more than 120 revolutions per minute. An application material is applied to the implantable device using the ultrasonic material delivery apparatus. The relative speed may be sufficient to reduce the size of at least a portion of droplets of the application material. A system for rotating an implantable device is disclosed. The system includes an implantable device and a rotation system configured to rotate the implantable device. A longitudinal axis of the implantable device and a longitudinal axis of a rotation member of the rotation system may be offset a desired dimension. An inside diameter of the implantable device may be larger than an outside diameter of a rotation member.
Abstract:
A method and device for coating a medical device, such as a stent, including rolling the stent against a ribbon or gravure roll impregnated with coating material. The ribbon and gravure roll may include a recessed pattern matching a strut pattern of the stent. The stent may also be rolled against a plate or cylinder while coating material is forced onto the stent through a pattern of holes or openings in the plate or cylinder matching a strut pattern of the stent.
Abstract:
A method and apparatus for applying a solid particulate powder coating to a stator stack having a plurality of longitudinally extending stator slots. The apparatus includes a coating application station for applying powder particles to the stator stack, a coating removal station for displacing the powder particles from selected areas of the stator stack and a curing oven for curing the powder particles onto the stator stack. A collection hopper is provided for receiving recycled powder particles and includes a porous structural side wall for permitting air to exit the hopper while retaining the powder particles from passing into the environment around the system.
Abstract:
Coating a stent may include continuously rotating the stent in one direction while spraying a first coating layer followed by continuously rotating the stent in another direction while spraying a second coating layer, wherein the first layer is preferentially distributed over a side surface of the stent struts and the second layer is preferentially distributed over an opposite side surface of the stent struts. The overall coating distribution combining both layers may be evenly distributed over the two side surfaces of the stent struts.
Abstract:
The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.
Abstract:
In order to mechanically coat relatively long components under temporally and economically optimum conditions, in particular to coat the components continuously, the method is characterised by the following steps: supplying the pipe to be coated into a first processing line in which the pipe is transported axially, preheating the pipe or a portion of the pipe, applying a primer coat, heating the pipe to achieve a polarisation between primer coating and pipe, drying the pipe to completely expel all soluble constituents, feeding the pipe into a second processing line in which the pipe is transported axially, preheating the pipe, applying the coating in a cross-head extruder, heating the pipe in an induction furnace, curing the coated pipe, and cooling the coated pipe.
Abstract:
A system for coating a tubular implantable medical device, such as a stent, can include a rotatable applicator and a rotatable support for the medical device. The axes of rotation of applicator and the support can be substantially non-parallel.