Abstract:
Provided for example is a method of making an lined elastomeric article comprising: (I) applying to a base elastomer layer a foamed or unfoamed composite of flock fibers and aqueous elastomer, wherein (a) if the elastomer base layer polymer component is (i) not predominantly NR or (ii) not predominantly NR plus NBR, then the elastomer of the composite comprises NBR, wherein NBR and if present acrylic latex are (1) substantial in the composite or (2) predominate in the composite, and/or wherein (b) the elastomer of the composite comprises acrylic latex, NBR and, if the elastomeric base layer is not predominantly NBR, the major elastomer of the base layer.
Abstract:
This application is directed to a device comprising a covering attached to the device. A process of making a device with a specific covering attached is also disclosed. The application further discloses a method for the treatment of perforations, fistulas, ruptures, dehiscence and aneurisms in luminal vessels and organs of a subject.
Abstract:
A method of manufacturing roofing shingles is provided. The method includes the step of coating a continuously supplied shingle mat with roofing asphalt to make an asphalt-coated sheet. The asphalt-coated sheet has at least one prime portion and at least one headlap portion. The thickness of the asphalt-coated sheet is varied by passing the asphalt coated sheet through compression rollers configured to compress the asphalt-coated sheet and form a formed sheet such that the prime portion of the formed sheet has a first thickness and the headlap portion has a second thickness, different from the first thickness. The formed sheet is passed under a film applicator configured to supply a film to the headlap portion thereby forming a filmed sheet. Granules are applied to the filmed sheet to form a granule-covered sheet such that granules do not adhere to the headlap portion. The granule-covered sheet is cut into shingles.
Abstract:
Disclosed are systems and methods, including a method that includes depositing a curable adhesive onto a first surface of a substrate in a pre-determined pattern, placing topping material onto the substrate with the deposited adhesive, and applying UV energy to the substrate including the deposited adhesive and the placed topping material to cause curing of the deposited adhesive.
Abstract:
A method of manufacturing roofing shingles comprises the steps of: coating a continuously supplied shingle mat with roofing asphalt to make an asphalt-coated sheet, the asphalt-coated sheet having at least one prime portion and at least one headlap portion, varying the thickness of the asphalt-coated sheet such that the at least one prime portion of the asphalt-coated sheet has a first thickness and the headlap portion has a second thickness, the thickness of the asphalt-coated sheet being varied by passing the asphalt-coated sheet through a secondary coater to form a granule-covered sheet, and cutting the granule-covered sheet into shingles.
Abstract:
In one embodiment, a flocked article is provided that includes an elastomeric film and a plurality of flock fibers on a flocked surface of the film. The flock fibers are embedded in the film.
Abstract:
A method of manufacturing roofing shingles comprises the steps of: coating a continuously supplied shingle mat with roofing asphalt to make an asphalt-coated sheet, the asphalt-coated sheet having at least one prime portion and at least one headlap portion, varying the thickness of the asphalt-coated sheet such that the at least one prime portion of the asphalt-coated sheet has a first thickness and the headlap portion has a second thickness, the thickness of the asphalt-coated sheet being varied by passing the asphalt-coated sheet through compression rollers, applying granules onto the asphalt-coated sheet to form a granule-covered sheet, and cutting the granule-covered sheet into shingles.
Abstract:
A design and process are provided in which a fully activated thermosetting adhesive layer and multi-layered thermoplastic adhesive are positioned between a flock layer and a substrate.
Abstract:
A direct charging electrostatic flocking method is provided for the fabrication of a fibrous structure. Fibers are deposited directly on a first electrically conductive surface while a second electrically conductive surface with an adhesive thereon is disposed over the first surface. A vacuum is created in the space between the first electrically conductive surface and the second electrically conductive surface. The vacuum is then filled with sulfur hexafluoride gas. An electric field is generated between the first and second electrically conductive surfaces. The fibers leave the first electrically conductive surface, accelerate through the electric field and sulfur hexafluoride gas, and are coupled on one end thereof to the adhesive. As a result of using sulfur hexafluoride rather than air there is an increase in fiber density of the fibrous structure.