Abstract:
A radio-controlled flying apparatus comprising an annular buoyant body and having an overall center of gravity below the center of buoyant force of the buoyant body. The annular buoyant body contains a gas of lighter weight than air. A main body is supported by the annular buoyant body by means of a dual-axis gimbal. The main body is provided with a pair of propellers which are rotatably supported by the main body and are driven by variable-speed motors into rotation in opposite directions. The main body is further provided with a rocking mechanism for causing said main body to rock about the dual-axis gimbal. An electric circuit resides in the main body for receiving a radio wave from an external transmitter to control the rocking mechanism and variable-speed motors. The electric components in the electric circuit are supplied their power from a battery carried on the main body.
Abstract:
Improvement in heavier-than-air passenger aircraft having forward thrust engines, wings, a rear fin and rudder, and a lighter-than-air gas lift mechanism for enhancing the aerodynamic lift provided by the forward thrust engines and wings, such improvement comprising respective forward and rear wings, two equally widthwise spaced apart gas compartments containing lighter-than-air gas disposed vertically above the forward wing, a passenger compartment having a pilot compartment at the front end thereof, the passenger compartment disposed vertically above the forward wing and transversely centrally between the gas compartments, the forward and rear wings and the three compartments joined to each other to provide framing rigidity for said aircraft, the rear fin and rudder mounted upon the passenger compartment so as to upstand vertically therefrom to obtain a clear aerodynamic cut into the air, each compartment of substantially uniform transverse cross-section, each compartment extending axially substantially full length of said aircraft, the rear wing being a substantially full width rear wing disposed vertically above the forward wing so as to have a substantially clear aerodynamic cut into the air.
Abstract:
An unmanned and remotely controlled airship has a system of multirotors combined with an inflatable envelope. The airship may be lifted/powered by a power system that has three or more rotors. The airship may be constructed using rods, connectors, the main system/control box and the rotors. The airship system may have a systemic symmetry for weight distribution and flight control and may be, for example, a symmetric ellipsoid envelope/blimp.
Abstract:
A lighter-than-air semi-rigid airship has Configurable Buoyancy And Geometry (CBAG) allowing it to become short and plump for maximum buoyancy during takeoff and landing, but also allowing it to become long and slim for reduced drag (albeit less buoyancy) so that it may travel at high speed. It may be combined with a heavier-than-air structure having wings or rotors to form a hybrid aircraft whereby the wings or rotors provide enough lift to compensate for the reduced buoyancy during high-speed flight.
Abstract:
A system comprising an unmanned aerial vehicle (UAV) having wing elements and tail elements configured to roll to angularly orient the UAV by rolling so as to align a longitudinal plane of the UAV, in its late terminal phase, with a target. A method of UAV body re-orientation comprising: (a) determining by a processor a boresight angle error correction value bases on distance between a target point and a boresight point of a body-fixed frame; and (b) effecting a UAV maneuver comprising an angular role rate component translating the target point to a re-oriented target point in the body-fixed frame, to maintain the offset angle via the offset angle correction value.
Abstract:
The embodiment described herein is a hybrid balloon-multicopter invention. In a similar manner to a multicopter, it incorporates anticlockwise and clockwise rotating rotors to support maneuverability in three dimensional space. However, unlike a multicopter, maneuverability is augmented by the lift force generated by a balloon filled with a lighter than air gas. Furthermore, to support extended day and night operation, one embodiment of the invention includes photovoltaic cells to convert solar energy to electric energy recharging a battery.
Abstract:
An air cushioned landing system for an air vehicle comprises an inflatable and deflatable skirt (113) in the form of a tube having inner (101) and outer (100) walls. The inner wall defines a central plenum (116) within the skirt, the skirt including gas pockets (130) arranged to stiffen one or more regions of at least one of the inner (101) and outer (100) sidewalls during deflation of the skirt. A gas pocket fan inflates the gas pockets prior to and during deflation of the skirt, wherein the gas pockets are constrained to move from a mutually spaced apart position when the skirt is inflated, to a mutually closely adjacent position when the skirt is fully deflated.
Abstract:
An air vehicle comprises a vehicle body and a propulsion assembly. The vehicle body has the shape of a wing airfoil so that the vehicle body generates lift when air flows over the vehicle body. The vehicle body has a body longitudinal axis, and includes a first hull and a second hull that are secured together side-by-side, the hulls having longitudinal axes that are substantially parallel to the body longitudinal axis. Each hull defines a separate fluid chamber that is filled with a fluid that is at least partially buoyant. The propulsion assembly is secured to the vehicle body. The propulsion assembly generates thrust and includes a port front engine, a port rear engine, a starboard front engine, and a starboard rear engine, wherein at least two of the engines have independently controlled thrust vectors.
Abstract:
Modern farming is currently being done by powerful ground equipment or aircraft that weigh several tons and treat uniformly tens of hectares per hour. Automated farming can use small, agile, lightweight, energy-efficient automated robotic equipment that flies to do the same job, even able to farm on a plant-by-plant basis, allowing for new ways of farming. A hybrid airship-drone has both passive lift provided by a gas balloon and active lift provided by propellers. A hybrid airship-drone may be cheaper, more stable in flight, and require less maintenance than other aerial vehicles such as quadrocopters. However, hybrid airship-drones may also be larger in size and have more inertia that needs to be overcome for starting, stopping and turning.
Abstract:
A control system for a tethered aerostat is provided, where at least one rotational and at least one translational degree of freedom are controlled to setpoints through the variation of tether lengths by an actuator system. The term tether includes a single tether, a tether group or a sub section of tether controlled by an individual actuator. Accurate rotational and translational control is essential for the successful operation of an aerostat under several applications, including surveillance, weather monitoring, communications, and power generation. For a given use case, the controller can be constructed and arranged to manage the tradeoff between several key performance characteristics, such as transient performance, steady-state pointing accuracy, tether tension regulation, and power generation.