Abstract:
A method for fabrication of a piece including, superposing an electrically insulating layer including a first orifice, an additional layer including a first aperture, an intermediate layer including a first hole, and a base layer surmounted by a base motif, depositing a metal layer, so that at the end of this step, the metal layer forms a shell covering electrically conductive walls of the base motif, of the first orifice, of the first aperture and of the first hole, and includes a lateral area resting on the insulating layer, dissolving the insulating layer, coating the metal or alloy layer with a volume formed by a base material of the piece, so that the volume conforms to the shapes of the metal layer.
Abstract:
The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Abstract:
A method of fabricating a plurality of metallic microstructures by LIGA process, the method including a flattening step or a levelling step of the resin layer before the step of electroforming the metallic microstructures permitting the resin layer to have a uniform thickness, which enables molds, and then finished metallic microstructures, to be made with uniform dimensional precision in the plane for the metallic microstructures of the same substrate.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An in-situ compressed specimen of copper interconnection micro column, which is a circular metal column formed in a PDMS hole, includes: a specimen part and a fixed end part for fixing the specimen; wherein the fixed end part is a circular or square plate structure, the specimen part is an upper part of the fixed end part; a main body of the present invention is of micron order, a forced direction of the specimen is consistent with a growth direction of the metal column. A method of electroplating copper column by adopting PDMS as template substrate is applied to overcome a problem that TSV is corrosive to the copper column during a silicon etching process so as to affect a mechanical property accuracy test, the method is advanced in shortening test process period, achieving good reproducibility and high yield.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Abstract:
The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Abstract:
The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.