Abstract:
An electric washing machine according to the present invention performs a washing process with the use of electrolyzed water. When the level of supplied water reaches an electrolyzing water level which is lower than a washing water level, energization of an electrolyzing device (31) is started. At this time, air is supplied into an electrolyzing chamber (32) by an air pump (89), so that water in the electrolyzing chamber (32) is caused to flow, thereby assisting efficient electrolysis of the water. The water thus electrolyzed has an enhanced cleaning capability thereby to improve the washing performance of the washing machine.
Abstract:
There is provided an apparatus for producing strong alkaline reductive electrolyzed water and acidic water that enables efficient production of electrolyzed water that has excellent washing and sterilizing effects. There is provided an apparatus for producing strong alkaline reductive electrolyzed water and acidic water, which comprises an electrolyzer provided with a strong alkaline reductive electrolyzed water-producing chamber, an acidic water-producing chamber and a partitioning membrane, wherein a flow path diffusing device is provided in the electrolyzer, and a gap between the cathode plate and the anode plate of 0.1 mm to 1 mm.
Abstract:
Deionizers using the electrode configurations of electrochemical capacitors are described, wherein the deionizing process is called capacitive deionization (CDI). During deionization, a DC electric field is applied to the cells and ions are adsorbed on the electrodes with a potential being developed across the electrodes. As electrosorption reaches a maximum or the cell voltage is built up to the applied voltage, the CDI electrodes are regenerated quickly and quantitatively by energy discharge to storage devices such as supercapacitors. In conjunction with a carousel or Ferris wheel design, the CDI electrodes can simultaneously and continuously undergo deionization and regeneration. By the responsive regeneration, the CDI electrodes can perform direct purification on solutions with salt content higher than seawater. More importantly, electrodes are restored, energy is recovered and contaminants are retained at regeneration, while regeneration requires no chemicals and produces no pollution.
Abstract:
A method and apparatus for the electrochemical treatment of an aqueous solution in an electrolytic cell is described. Output solution having a predetermined level of available free chlorine is produced by applying a substantially constant current across the cell between an anode and a cathode while passing a substantially constant throughput of chloride ions through the cell.
Abstract:
The present invention is directed to a new water treatment device comprising an electrolytic tank to put water in, an electrode provided in the electrolytic tank, a water treating path for pouring water in a pool and returning to the pool the water in the electrolytic tank, a residual chlorine sensor for measuring the residual chlorine concentration of water, and control means for controlling the energization of the electrode on the basis of the measured value by the residual chlorine sensor, and capable of simply and efficiently sterilizing water stored in pools of various sizes from a swimming pool to a home bathtub.
Abstract:
A fully automatic deionizer comprising five sub-systems for removing ionic contaminants from various liquids at low energy consumption is devised. Based on the charging-discharging principle of capacitors, the deionizer conducts deionization through applying a low DC voltage to its electrodes for adsorbing ions, while more than 30% of the process energy is recovered and stored by discharging the electrodes. At the mean time of discharge, surface of the electrodes is regenerated on site and reset for performing many more cycles of deionization-regeneration till the desirable purification is attained. In one moment, both deionization and regeneration proceed simultaneously on different groups of electrode modules, and in the next moment the electrode modules quickly switch the two processes. Such swift reciprocating actions are engaged in synchronized coordination of sub-systems of electrode modules, energy management, fluid flow, and automatic control.
Abstract:
A control unit for an apparatus for removal of electrostatic charge and electricity from fluids, including a probe apparatus for extending into the contained fluids, a control unit, circuitry interconnecting between the grounding apparatus and the control unit, control unit providing for monitoring the conductivity or mineral content of the fluid stream, while the grounding apparatus removes the mineral salts and trace minerals and other electrolytic charge from the fluids, while additional circuitry within the control unit reduces the fouling of a re-circulating fluid stream normally caused by the growth of various kinds of algae, molds or bacteria.
Abstract:
A water purification apparatus and methods for the purification of water are provided. The invention features an atmospherically-isolated, but ventable, reservoir electrolysis cell with control features for selecting an electrolysis duration depending on temperature, time since last electrolysis, or time since last gas venting. The device and associated method can easily take a wide range of input water qualities into account for the production of an effective amount of sterilizing water.
Abstract:
An apparatus for decontamination contaminated groundwater in-situ by increasing the quantity of dissolved oxygen in the contaminated groundwater and generating reactive initiators to remediate the contaminated groundwater. The apparatus includes a submersible pump, an electrolytic cell, a chlorine filter, and a distribution chamber. The distribution chamber is vertically oriented and longitudinally-extending from the outlet of the cell. As the groundwater flows across charging plates of the cell, some of the molecules break into their component parts of hydrogen gas and oxygen gas. A selected vertical length of the chamber provides a resident time for the fluid allowing a majority of the gaseous oxygen to transition to dissolved oxygen.
Abstract:
An apparatus for decontamination contaminated groundwater in-situ by increasing the quantity of dissolved oxygen in the contaminated groundwater and generating reactive initiators to remediate the contaminated groundwater. The apparatus includes a submersible pump, an electrolytic cell, and a distribution chamber attached to an outlet of the cell. The distribution chamber is vertically oriented and longitudinally-extending from the outlet of the cell. As the groundwater flows across charging plates of the cell, some of the molecules break into their component parts of hydrogen gas and oxygen gas. A selected vertical length of the chamber provides a resident time for the fluid allowing a majority of the gaseous oxygen to transition to dissolved oxygen.