Abstract:
A layered gradient material which comprises a plurality of layers composed of a mixture of hydroxyapatite and calcium tertiary phosphate and is obtained by producing a layered body by stacking a plurality of layers in which the compounding ratio of hydroxyapatite to calcium tertiary phosphate is stepwise or continuously changed and then sintering the layered body by the spark plasma sintering method is excellent in mechanical strength such as compressive strength, flexural strength and Young's modulus, and further, is excellent in biological reactivity such that in the case where it is used as a bone substitute material, bone destruction and new bone reconstruction actively occur. Accordingly, it is extremely useful as a biological material such as a bone substitute material, artificial tooth root and dental cement.
Abstract:
A composite material being excellent in heat conductivity is provided. In order to realize this, a fibrous carbon material made of fine tube form structures constituted with single-layer or multiple-layer graphene is present to form a plurality of layers within a substrate made from a spark plasma sintered body of a metal powder, a mixed powder of a metal and ceramics, or a ceramic powder. The fibrous carbon material constituting each layer is made of a mixture obtained by mixing a small amount of a small diameter fiber 2 having an average diameter of 100 nm or less with a large diameter fiber 1 having an average diameter of 500 nm to 100 μm.
Abstract:
The method comprises the steps of: forming a porous fiber-reinforcing structure; introducing into the pores of the fiber structure powders containing elements for constituting the composite material matrix; and forming at least a main fraction of the matrix from said powders by causing a reaction to take place between said powders or between at least a portion of said powders and at least one delivered additional element; the powders introduced into the fiber structure and the delivered additional element(s) comprising elements that form at least one healing discontinuous matrix phase including a boron compound and at least one discontinuous matrix phase including a crack-deflecting compound of lamellar structure. At least a main fraction of the matrix is formed by chemical reaction between the powders introduced into the fiber structure and at least one delivered additional element, or by sintering the powders.
Abstract:
A method for preparing highly dense functional oxides with crystallite size in the range of 10-20 nm. Using a high pressure modification of a the Spark Plasma Sintering (SPS) technique, rapid thermal cycles (
Abstract:
In a method of manufacturing a phosphor-containing molded member, an inorganic powder in a mixture with a phosphor powder is melted by using Spark Plasma Sintering method, and then cooled. In a phosphor-containing molded member, a content of the phosphor therein is 5% by weight or more.
Abstract:
Ceramic materials are converted to materials with anisotropic thermal properties, electrical properties, or both, by forming the ceramics into composites with carbon nanotubes dispersed therein and uniaxially compressing the composites in a direction in which a lower thermal or electrical conductivity is desired.
Abstract:
Disclosed are a carbon nanotube aggregate and a method for forming a carbon nanotube aggregate. An aggregate can be obtained by fluorinating the surfaces of carbon nanotubes. The method for forming a carbon nanotube aggregate is characterized by comprising a step for firing a plurality of fluorinated carbon nanotubes.
Abstract:
A mixture of carbon-containing fibers, such as mesophase or isotropic pitch fibers, a suitable matrix material, such as a milled pitch is compressed while resistively heating the mixture to form a carbonized composite material. Preferably, the carbonized material has a density of at least about 1.30 g/cm3. Preferably, the composite material is formed in less than ten minutes. This is a significantly shorter time than for conventional processes, which typically take several days and achieve a lower density material. A treating component may be impregnated into the composite. Consequently, carbon/carbon composite materials having final densities of about 1.6–1.8 g/cm3 or higher are readily achieved with one or two infiltration cycles using a pitch or other carbonaceous material to fill voids in the composite and rebaking.
Abstract translation:将含碳纤维如中间相或各向同性沥青纤维,合适的基质材料如研磨沥青的混合物压缩,同时电阻加热混合物以形成碳化复合材料。 优选地,碳化材料具有至少约1.30g / cm 3的密度。 优选地,复合材料在不到10分钟内形成。 这比通常需要几天并实现较低密度材料的常规工艺明显更短的时间。 处理组分可以浸渍到复合材料中。 因此,具有约1.6-1.8g / cm 3或更高的最终密度的碳/碳复合材料通过使用沥青或其它含碳材料填充复合材料中的空隙的一个或两个渗透循环容易地实现 并重新开始。
Abstract:
The present invention has an object of providing a carbon nanotube dispersed composite material utilizing as much as possible excellent electric conductivity, heat conductive property and strength property owned by a carbon nanotube itself and taking advantage of features of ceramics having corrosion resistance and heat resistance such as zirconia and the like, and a method of producing the same; and long-chain carbon nanotubes (including also those obtained by previous discharge plasma treatment of only carbon nanotubes) are kneaded and dispersed by a ball mill, planet mill and the like together with calcinable ceramics and metal powder, further, the knead-dispersed material is treated by discharge plasma and this is integrated by sintering by discharge plasma, and carbon nanotubes can be thus dispersed in the form of network in the sintered body, and the electric conductivity property, heat conductive property and strength property of the carbon nanotube can be effectively used together with the properties of the ceramics and metal powder base material.
Abstract:
Composite materials containing silicon, titanium, carbon, and nitrogen, formed by spark plasma sintering of ceramic starting materials to a high relative density, demonstrate unusually high electrical conductivity as well as high-performance mechanical and chemical properties including hardness, fracture toughness, and corrosion resistance. This combination of electrical, mechanical, and chemical properties makes these composites useful as electrical conductors in applications where high-performance materials are needed due to exposure to extreme conditions such as high temperatures, mechanical stresses, and corrosive environments.