Abstract:
Provided is an apparatus capable of producing a fluoride crystal in a very short period of time, and a method suitable for producing a fluoride crystal using the apparatus. The apparatus comprises a chamber, a window material, and the like, and is modified such that it can evacuate air from the chamber to provide a high degree vacuum there. The apparatus further includes a crucible, which has a perforation at its bottom. The capillary portion of the perforation is adjusted to facilitate the contact of a seed crystal with a melt. By using the apparatus it is possible to stably produce high quality single crystals of fluorides in a short period of time.
Abstract:
A fine treatment agent according to the present invention is a fine treatment agent for the fine treatment of a multilayer film, including a tungsten film and a silicon oxide film comprising at least one from among hydrogen fluoride, nitric acid, ammonium fluoride and ammonium chloride. Thus, a fine treatment agent which makes fine treatment on a multilayer film, including a tungsten film and a silicon oxide film, possible by controlling the etching rate and a fine treatment method using the same can be provided.
Abstract:
Disclosed is a process liquid which causes only little dissolution of atoms from a semiconductor surface and enables to form a clean and flat semiconductor surface. Also disclosed are a processing method and an apparatus for manufacturing a semiconductor. Specifically disclosed is a process liquid-which causes only little dissolution of atoms from a semiconductor surface by using an aqueous solution containing at least one alcohol or ketone, thereby realizing a clean and flat surface.
Abstract:
An apparatus for producing a fluoride crystal, which has a chamber, a window material and the like capable of dealing with the fluoride, is equipped with facilities necessary for high vacuum evacuation, and uses a crucible in which the capillary portion of the hole formed in the bottom thereof is so controlled for a seed crystal and a molten material to be easily contacted to each other; and a method for producing a fluoride crystal comprising using the apparatus. The apparatus allows the production of a single crystal of a fluoride having high quality in a extremely short time with stability.
Abstract:
The present invention provides a method enabling the high purification of a niobium compound and/or tantalum compound in a simplified manner at a low cost. This is accomplished by providing a method enabling the high purification of a niobium compound and/or tantalum compound comprising the steps of preparing a solution containing niobium and/or tantalum, allowing a precipitate comprising niobium and/or tantalum to develop, separating the precipitate by filtration from the filtrate, converting the precipitate to a liquid melt or taking the filtrate, and separating a niobium compound from a tantalum compound or vice versa by utilizing the difference in solubility to the solvent between the niobium compound and the tantalum compound.
Abstract:
A method for removing calcium from water containing a high concentration of calcium bicarbonate, permitting a reduction of the calcium bicarbonate equivalent to 200-500 ppm calcium to the level in accordance with the water quality standards for industrial use, not by a method using a large amount of heat and power as heating and deairing, but by a simple chemical treatment. Calcium hydroxide is added to waste water containing a high concentration of calcium in a form of calcium bicarbonate for making them react with each other, and removing calcium by fixing it to calcium bicarbonate.
Abstract:
Hydrofluoric acid has incorporated therein a hydrocarbon nonionic surfactant having an HLB value of 7 to 17. The composition exhibits improved wetting and other properties for use in surface treatment for micro processing.
Abstract:
A carbon nanotube aggregate and a method for forming a carbon nanotube aggregate are provided. The carbon nanotube aggregate can be formed by treating carbon nanotubes with fluorine gas and sintering the resulting fluorinated carbon nanotubes. A carbon nanotube aggregate can be formed which does not contain a binder or resin matrix.
Abstract:
It is aimed at providing a fluoride crystal growing method capable of controlling a shape of the crystal by a micro-pulling-down method. Fluoride crystals in shapes depending on purposes, respectively, can be grown by adopting carbon, platinum, and iridium as crucible materials adaptable to fluorides, respectively, and by designing shapes of the crucibles taking account of wettabilities of the materials with the fluorides, respectively.
Abstract:
This invention aims to develop a chitin oligomer composition and/or a chitosan oligomer composition wherein the content of an oligomer from a trimer to a decamer is 60% or more, and to develop a process for preparing the above-mentioned oligomer composition. The object of the invention can be achieved by mixing hydrofluoric acid or hydrohalogenated acid other than hydrofluoric acid and hydrofluoric acid with a chitin-based material and/or a chitosan-based material.