Abstract:
I claim a process for producing a superior fuel from biomass by first torrefying the biomass and then densifying it to make pellets, cubes or logs with the steps of: heating biomass to a temperature of 150-300 C and preferably to 200-280 C in a heating device, and densification of the resulting torrefied biomass in a device that compresses the hot biomass to make pellets, cubes or logs. The process can be partially or totally self heating by burning the gaseous products of torrefaction in the oven surrounding the torrefication apparatus. The energy required for size reduction after torrefaction is greatly reduced and the energy required for densification is also greatly reduced.
Abstract:
New product consisting of wood which is torrefied between 250.degree. and 280.degree. C. in a non oxidizing atmosphere, in the form of sticks of uniform length: 15 mm for example and having a diameter comprised between 5 and 20 mm, which are not disbarked. The preparation of the method comprised the obtention by culture of rectilinear ligneous rejections, the cutting, drying and torrefaction thereof preferably in a vertical reactor (101) where the material to be torrefied (115) is traversed by a gas stream circulating at high speed.
Abstract:
A biomass upgrading process comprises a steam-cracking step for producing a granulated combustible product, and, prior to the granulation step, a step of mixing an intermediate pulverulent product resulting from the steam-cracking of the biomass and a pulverulent material having a high lignin content.
Abstract:
A system for torrefaction of waste material comprising biogenic material and plastic material may comprise a material pre-processing system, a heating and compaction unit, a reactor system comprising a reaction portion and an extrusion portion, and a cutting unit adjacent an outlet of the reactor system. A method for operating a system for torrefaction of waste material comprising biogenic and plastic material may comprise processing the waste material to generate waste material having an aspect ratio between 0.8:1 and 1.2:1 and a largest dimension of less than 4 millimeters (mm); compressing and heating the pre-processed waste material in the heating and compaction unit; heating the compacted waste material in the reactor system to a temperature of 280° C.-500° C.; extruding material from the reactor system; and cutting the extruded material into pellets.
Abstract:
Systems and methods associated with biomass decomposition are generally described. Certain embodiments are related to adjusting a flow rate of a fluid comprising oxygen into a reactor in which biomass is decomposed. The adjustment may be made, at least in part, based upon a measurement of a characteristic of the reactor and/or a characteristic of the biomass. Certain embodiments are related to cooling at least partially decomposed biomass. The biomass may be cooled by flowing a gas over an outlet conduit in which the biomass is cooled, and then directing the gas to a reactor after it has flowed over the outlet conduit. Certain embodiments are related to systems comprising a reactor and an outlet conduit configured such that greater than or equal to 75% of its axially projected cross-sectional area is occupied by a conveyor. Certain embodiments are related to systems comprising a reactor comprising an elongated compartment having a longitudinal axis arranged substantially vertically and an outlet conduit comprising a conveyor.
Abstract:
A process for converting waste fibers to solid fuel is provided, including providing a supply of animal waste including the waste fibers in a predetermined quantity; washing the supply of animal waste for a predetermined washing period; dewatering the supply of animal waste by separating water from the waste fibers for a predetermined dewatering period; shedding the waste fibers for separating liquids from solids; compressing the dewatered and shed waste fibers to generate a plurality of briquettes; torrefying at least one of the plurality of briquettes in a torrefaction reactor using a heat source at a predetermined torrefying temperature for a predetermined torrefying period; removing the at least one of the plurality of briquettes from the reactor; and cooling the torrefaction reactor to reach a predetermined cooling temperature.
Abstract:
Pelletized carbonized biomass-based fuel products, methods, and apparatuses are provided. Methods include applying a binder and a first amount of water to at least partially carbonized biomass, applying a second amount of water to the at least partially carbonized biomass, and pelletizing the at least partially carbonized biomass in an inert atmosphere. Apparatuses include a feeder of at least partially carbonized biomass, a binder source and a first water source configured to provide a binder and water to the at least partially carbonized biomass, a second water source downstream of the binder and first water sources, a pelletizer configured to receive and pelletize the at least partially carbonized biomass, and an inert gas source configured to provide inert gas to the pelletizer.
Abstract:
A reactor for grinding and roasting biomass, including: a chamber interiorly delimited with internal walls; a grinder laid out inside the chamber, including a central rotary shaft rotatably mounted in the chamber and grinding elements present on the central rotary shaft for grinding against internal walls and of biomass, or lingo-cellulosic biomass, present inside the chamber; a heater for heating and maintaining by thermal conduction via the grinder the biomass present inside the chamber, at a predetermined called roasting temperature between 200° C. and 350° C., to simultaneously achieve grinding and roasting of the biomass in the chamber.
Abstract:
A pellet stove, having a pellet hopper, a combustion chamber, a heat exchanger and a pellet movement assembly, adapted to move the pellets from the hopper into the combustion chamber. The pellet movement assembly is located and configured so as to be heated by exhaust gases from the combustion chamber and the pellets spend a sufficient amount of time in the pellet movement assembly, where oxygen is prevented from freely flowing in, so that the pellets are torrefied during transit to the combustion chamber.
Abstract:
The invention relates to a method and an arrangement for precise monitoring and control of torrefaction temperature, which enables accurate control of the quality and properties of the torrefied material. The method includes determining the surface temperature of the biomass in the torrefaction arrangement is using an IR-thermometer and hot nitrogen gas a purge gas.