Abstract:
Methods are provided for forming a spliced eye (220) of a sling (222) made from a rope that includes a core rope (37) and includes a braided sheath (398).
Abstract:
A rope and a method of constructing the rope. The rope may be of 12×12 braided construction and include a core for its length. The rope includes a plurality of primary strands, and each of the primary strands includes a plurality of fibers which may be made of a high-friction material. The rope also includes a secondary strand surrounded by the plurality of primary strands. The secondary strand includes a plurality of fibers which may be made of a low-friction material.
Abstract:
A wire strand (10) comprises a plurality of wires (12, 16, 20). The wires comprise a central king wire (12), a first layer (14) of wires (16) arranged around the king wire, and a second layer (18) of wires (20) arranged around the first layer. The king wire is formed of steel having a carbon content of at least 0.3 wt %. Each wire of the first layer is formed of steel having a carbon content which is less than the carbon content of the king wire. Each wire of the second layer is formed of steel having a carbon content which is greater than, or the same as, the carbon content of the wires of the first layer.
Abstract:
Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic portion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.
Abstract:
Disclosed is a method for producing a high strength synthetic strength member (7) containing rope (1) capable of being used with powered blocks where such rope has lighter weight and similar or greater strength than steel wire strength member containing ropes used with powered blocks. Disclosed also is the product resulting from such method. The product includes a synthetic strength member, a first synthetic portion (9) and a second synthetic portion. The first synthetic portion is enclosed within the strength member and the second synthetic portion is situated external the strength member. At least a portion of the second synthetic portion also is situated internal a sheath (8) formed about the strength member. The second synthetic portion has a minimal of 8% at a temperature of between negative 20 and negative 15° C.
Abstract:
A fast rope, which includes a weighted core, a first braid surrounding the core, a second braid surrounding the first braid, and a third braid surrounding the second braid. The core is constructed from lead wires extruded over a polyester yam, the first braid is strands of polypropylene, the second braid is strands of composite press material, and the third braid is strands of polyester multiplex.
Abstract:
A combined cable comprising a core cable of high-strength synthetic fibers, which take the form of a twisted bundle of monofilaments or a plurality of twisted bundles of monofilaments, and comprising an outer layer of steel wire strands, is characterized in that the bundle or bundles of monofilaments is or are stretched, with a reduction in diameter, and held in this state by a sheathing, in particular a braided sheathing. The extension under strain of the core cable under load is thereby reduced, so that the load distribution between the cross section of steel and the cross section of synthetic material of the cable improves.In order, in the same sense, conversely to make the strain behavior of the layer of strands approximate that of the core cable, the cable has an intermediate layer of an elastic synthetic material into which the steel wire strands are pressed while spaced apart from one another in such a way that the outer layer extends under load, and contracts radially.A strand can be analogously constructed.
Abstract:
A highly flexible radiopaque cable includes two, and preferably three or more strands of nickel-titanium (NiTi) alloy wire which are twined about a higher density core wire preferably made of at least one of silver, gold, tungsten, or platinum-iridium to form a wire rope. Other high density core wires may be used. The wire rope is drawn through successive dies to reduce its diameter until the outer surface of the cable is substantially smooth, the cross section of the cable is substantially circular, and the overall diameter of the wire rope is reduced by 20-50%. The cable is then annealed to remove the effects of cold working. The resulting cable has been found to have a substantially equal or improved flexibility (i.e., a lower modulus of elasticity) relative to single strand nickel-titanium wires of the same diameter and a higher radiopacity. In an alternative embodiment, no core wire is utilized, and the higher density wire is drawn with two or more strands of NiTi wire. In another embodiment, the higher density wire is radioactive.