Abstract:
The present invention relates to a joining system comprising a locking device (1) and a first element (2) and a second element (3) to be joined by the locking device (1). The locking device (1) comprises a first end section (4), a centre section (5), and a second end section (6). The first and second end sections (4, 6) extend in opposite directions from the centre section (5), and at least one surface (7) of each of the first and second end sections (4, 6) are provided with at least one barb (8). The barb (8) is angled in a direction towards the centre section (5). The first and second elements (2, 3) are each provided with a groove (9). The locking device (1) is completely enclosed by the grooves (9) when the first and second elements (2, 3) are joined by the locking device (1).
Abstract:
Described herein is a monolithic cementitious article with one or more pre-formed shaped regions. The shaped regions are generally channels that extend through a portion of the article or span the full article. The article includes one or more openings at least one of its ends. The article has a low apparent density with a high strength as well as high performance characteristics. The article when manufactured is suitable for use as a building product, such as siding, panel, trim, fascia, roofing, crown molding, decking, and fencing.
Abstract:
The ceramic tiled floor includes tiles provided along at least one edge with grooves, and tongued strips, complementary to the grooves adapted to connect adjacent tiles, so as to give the entire floor stability and planarity.
Abstract:
A panel system includes elongated panels coupled together at a seam portion with respective interlocking portions at corresponding vertical ends to provide a substantially planar surface. In siding panel systems, joined siding panels are provided in vertically arranged rows that further couple together along adjacent horizontal edges of the respective rows of siding panels.
Abstract:
A modular flooring system includes a plurality of floor tiles situated about a ground surface, with each floor tile having a substantially-flat top surface and a connection interface with opposing engagement surfaces. The flooring system also includes a plurality of removable bridge connectors, with each of the bridge connectors having a plurality of tile interfaces, and with each tile interface having complimentary engagement surfaces configured to engage with the opposing engagement surfaces of the connection interfaces. The tile interfaces of the bridge connectors couple to the respective connection interfaces of any adjacent floor tiles to restrain the relative vertical movement between the adjacent floor tiles while facilitating controlled relative lateral movement between the floor tiles.
Abstract:
Floor element (1), which is mainly in the form of a board with triangular, quadratic, rectangular, rhomboidal or polygonal shape as seen from above. The floor element (1) is provided with edges (2), a lower side (7) and a decorative upper layer (3). The floor elements (1), which are intended to be joined via tongue and groove are on at least two opposite edges (2), preferably on all edges (2) provided with holes (4). The holes (4) extends inwards from the edge (2) mainly parallel to the decorative upper layer (3). The holes (4) are arranged on a predetermined distance from the decorative upper layer (3) and on a predetermined distance from a closest corner between two adjacent edges (2), whereby the holes (4) are intended to receive each one part of a guiding means (6).
Abstract:
Floor element (1), which is mainly in the form of a board with triangular, quadratic, rectangular, rhomboidal or polygonal shape as seen from above. The floor element (1) is provided with edges (2), a lower side (7) and a decorative upper layer (3). The floor elements (1), which are intended to be joined via tongue and groove are on at least two opposite edges (2), preferably on all edges (2) provided with holes (4). The holes (4) extends inwards from the edge (2) mainly parallel to the decorative upper layer (3). The holes (4) are arranged on a predetermined distance from the decorative upper layer (3) and on a predetermined distance from a closest corner between two adjacent edges (2), whereby the holes (4) are intended to receive each one part of a guiding means (6).
Abstract:
The utilization of a specific load transfer device for the purpose of allowing for reliable connection and adhesion of composite wood boards during edifice manufacture therewith is provided. Such a device is configured for containment within slots cut into the peripheral edges of such wood boards and cut into a shape therein that is complementary to that of the device itself. In such a manner, the device, when introduced within the properly shaped slot, permits separation of adjacent wood boards that are sequentially applied to the frame of the target edifice, as well as, ultimately, sufficient load bearing strength for the overall construction (such as a roof) within which such connected wood boards are utilized. The separation of wood boards thus permits proper sealing therebetween (with tape, sealant, or other like material) as well as proper distance for shrinking or swelling (due to moisture/temperature variations) to be taken into account during the lifetime of the edification (thereby permitting expansion as needed). The ability to impart increased load bearing strength thus allows for an increase in construction materials (in number and in weight) to be carried and kept on such a structure during construction as well. The method of manufacture of an edifice utilizing such load transfer devices between wood boards is also encompassed within this invention.
Abstract:
The present invention provides a tile panel unit having a tile cap composed of at least one layer of crushed stone mixed with a resin and a catalyst and at least one layer of fiberglass strands mixed with a resin, and a base plate at least partially embedded in at least one layer of the tile cap material. The base plate provides a structure for supporting the tile cap, the structure having a matrix of supporting shapes and other reinforcing elements arranged within a peripheral support structure. The base plate further provides mounting features for securing the tile panel unit to an underlying support structure, and interlocking features for aligning and securing adjacent tile panel units in a wall and floor covering tile assembly system.
Abstract:
A fastener for securing boards to joists includes first and second sharp, pointed prongs. The first prong has a driving portion for driving the prong at an angle through a first board and a joist thereunder. The second prong extends from a lateral member connected to the driving portion of the first prong, defining an angle between the first prong and the second prong in the range of about 30 to 60 degrees. The second prong acts to secure an adjacent board to the first board. In another aspect, a fastener for securing boards to joists thereunder includes a first member having two parallel sharp, pointed prongs, and a third sharp, pointed prong extending from the first member at an angle in the range of about 35-55 degrees One of the prongs of the first member is driven into a first board and the other of the prongs is driven into the joist. The third prong secures an adjacent board to the first board.