Abstract:
A movable barrier operator having improved safety and energy efficiency features automatically detects line voltage frequency and uses that information to set a worklight shut-off time. The operator automatically detects the type of door (single panel or segmented) and uses that information to set a maximum speed of door travel. The operator moves the door with a linearly variable speed from start of travel to stop for smooth and quiet performance. The operator provides for full door closure by driving the door into the floor when the DOWN limit is reached and no auto-reverse condition has been detected. The operator provides for user selection of a minimum stop speed for easy starting and stopping of sticky or binding doors.
Abstract:
The invention relates to a drive for a flap provided on a vehicle, especially an engine hood. The drive comprises an electric motor, an actuation shaft that is connected to the flap, and a reduction gear by means of which the rotor of the electric motor is coupled to the actuation shaft. The drive flier comprises an energy accumulator by means of which the actuation shaft can be driven independently of the electric motor. The reduction gear is configured in such a way that the actuation shaft is driven in a rotational direction only by the energy accumulator and the electric motor drives the actuation shaft in an opposite rotational direction, thereby supplying to the energy accumulator an energy that is needed to drive the actuation shaft in the rotational direction. The invention further relates to a pedestrian protection means provided on a vehicle and equipped with such a drive.
Abstract:
A drive unit provided with an end position recognition device includes a radially projecting cam (27) connected to a driveshaft (20) of the drive unit, for reducing the stroke travel of the unit. The radially projecting cam engages, from tooth to tooth, into the inner toothing of a ratchet wheel (110), rotatable about an axis of rotation (111) that is offset and parallel to an axis of the driveshaft (20). The end position recognition device can be retrofitted and is preferably capable of operating even in the case of emergency manual actuation. The cam (27) has a sufficient axial stroke lift such that, in the case of emergency manual actuation, it nonetheless meshes with the ratchet wheel (110) even when the driveshaft (20) is displaced axially.
Abstract:
A cable window lifter with a driving unit includes a drive housing having an internal cavity therein. A cable drum is disposed within the internal cavity and has an internal gear provided along an internal portion of the drum. A pinion gear is disposed within the internal portion of the cable drum and includes teeth that engage the internal gear of the cable drum. The pinion gear is driven manually or by a motor. A support core is disposed between a portion of the internal gear of the cable drum and a portion of the pinion gear teeth. The support core prevents the lateral deflection of the pinion gear teeth out of the internal gear of the cable drum during imposition of an overload force onto the pinion gear, thereby assuring improved running quality of the driving unit and reducing the forces occurring in the driving unit.
Abstract:
A power window mechanism designed to be retrofitted onto the crankshaft of a conventional handcrank operated window opening and closing mechanism includes a motor, a rack with ball-type cogs driven by the motor, a gear driven by the rack, a transmission gear driven by the driven gear, and a separate conversion gear having a central hole shaped to fit onto the shaft and whereby transmit power from the motor to the shaft. The position of the motor is detected by a sensor which generates pulse generated in response to turning of the motor, without the need for an electrical input. The control circuit itself is provided with a processor capable of counting the pulses and controlling the operation of the motor, including its direction, in response to the pulses.
Abstract:
A system for driving and controlling an open-area shield such as a window frame or door includes an open-area frame member having an opening; an open-area shielding member defining an open area together with the open-area frame member and made movable for shielding the open area; drive means for driving the open-area shielding member; closing drive instructing means for producing a closing drive instruction to drive the open-area shielding member in a direction to reduce the open area; a detection electrode disposed in at least one portion of the substantial peripheral edge of the open area; electrostatic capacity detecting means for detecting the electrostatic capacity of the detection electrode; obstruction setting means for setting the presence of an obstruction in the open area in accordance with the electrostatic capacity detected by the electrostatic capacity detecting means; and energization control means for energizing the drive means to close the same in response to the closing drive instruction of the closing drive instruciton means and for deenergizing the drive means when the obstruciton setting means sets the presence of an obstruction.
Abstract:
A door operator of electromechanical character for utilization with pivotally mounted doors, as by a center pivot, a butt hinge, or an offset pivot, comprising a prime mover, a driving shaft, adapted for rotation about a vertical axis and being secured through an arm to the door to be operated. A gear train interconnects said prime mover and said driving shaft wherein the gears are mounted as by a unique arrangement of needle roller and needle thrust bearings to permit said gear train to operate smoothly in door opening operation as a speed reducer and in door closing operation as a gear increaser. Energy storing means operatively connected to said driving shaft for storing energy during door opening operation and for energy releasing to drive said gear shaft during door closing operation. The said operator is adapted for compact disposition within the header of a door frame.
Abstract:
An automatic operator for an overhead garage door gravity-biased to a closed position includes a keeper centrally positioned on the garage above the doorway, a pivotally biased latch member secured to the top of the door and spring-biased into a locking configuration wherein it is engageable with the keeper for locking the door in its closed position, a reel mounted in the garage above the top of the door centrally thereof, a cable interconnecting the reel and the latch member, a reversible electric gear head motor coupled to the reel for rotating same in a winding direction to unlock the latch and open the door and in an unwinding direction to permit closing of the door and locking thereof by the latch member, means for actuating the motor, and motor control circuitry including a screw-type limit switch responsive to rotation of the reel for deactuating the motor after opening or closing of the door.
Abstract:
A door drive for a door of a vehicle includes
a rotation motor, a first torque transmitting device for transmitting a first torque, and a second torque transmitting device for transmitting a second torque.
wherein
The door drive further includes a blocking device for blocking the first torque transmitting device, wherein the blocking device can be activated and deactivated, and the door drive has an actuating member for activating and/or deactivating the blocking device.