Abstract:
A apparatus for use in a borehole in an earth formation. The apparatus may include: an electromagnetic source; an anisotropic permittivity material, either natural or manufactured, receiving electromagnetic radiation from the electromagnetic source; and a detector for estimating the electromagnetic radiation transmitted through the anisotropic permittivity material as an indication of a parameter of interest. Also, a method of estimating a parameter of interest using the aforementioned apparatus.
Abstract:
It is possible to observe a state of stress applied to a region around a cavity replicating a body cavity such as a blood vessel and the like in a three-dimensional model. In catheter insert simulation, when stress is applied to the region around the cavity in the three-dimensional model, it is possible to observe the catheter state together with a photoelastic effect corresponding to the stress state in the surrounding region caused by the catheter.
Abstract:
Provided is a stress history recording system for recording a stress history, which includes a light emitting means including a stress-stimulated luminescent material that emits light in response to a mechanical external force, and a recording means for recording a history of a photoreaction generated due to light emission from the light emitting means. This achieves a technology for recording a stress history by using the stress-stimulated luminescent material.
Abstract:
A sensor for measuring in a borehole at least one of orientation, acceleration and pressure, the sensor including: a light source; a birefringent material receiving light from the source; and a photodetector for measuring light transmitted through the birefringent material to measure the at least one of orientation, acceleration and pressure.
Abstract:
The invention relates to a technique for reducing computation time for force vector calculation. A force vector reconstruction method that uses an optical tactile sensor, comprises a step for obtaining a marker image by taking an image of behavior of colored markers when an object contacts a contact surface of an elastic body, a step of obtaining information relating to the marker behavior from the marker image, the information being more than the number of force vectors to be obtained, and a step of obtaining force vectors as outputs by inputting information relating to the obtained marker behavior to a transfer function. The step of obtaining force vectors comprises calculating force vectors using only information relating to behavior of markers neighboring region A1 of a position A where it is desired to obtain force vectors.
Abstract:
A method and apparatus for measuring the physical properties of a micro region measures the two-dimensional distribution of stress/strain in real time at high resolution and sensitivity and with a high level of measuring position matching. A sample is scanned and irradiated with a finely focused electron beam (23, 26), and the displacement of position of a diffraction spot (32, 33) is measured by a two-dimensional position-sensitive electron detector (13). The displacement amount is outputted as a voltage value that is then converted into the magnitude of the stress/strain according to the principle of a nano diffraction method, and the magnitude is displayed in synchronism with a sample position signal.
Abstract:
A system and method relating to the measuring of torque in a rotating shaft is provided. An optical torque sensing system comprises a rotating shaft, wherein a sleeve of photo-elastic material overlays a portion of the shaft. A light emitting component delivers light into the photo-elastic material, wherein the light delivered by the light emitting component is directed through the photo-elastic material along an axis of the rotating shaft. A capturing component captures the light that exits the photo-elastic material. The exiting light comprises fringe pattern data, and a computing system computes torsion strain of the shaft based at least in part on the fringe pattern information.
Abstract:
The invention relates to a technique for reducing computation time for force vector calculation. A force vector reconstruction method that uses an optical tactile sensor, comprises a step for obtaining a marker image by taking an image of behavior of colored markers when an object contacts a contact surface of an elastic body, a step of obtaining information relating to the marker behavior from the marker image, the information being more than the number of force vectors to be obtained, and a step of obtaining force vectors as outputs by inputting information relating to the obtained marker behavior to a transfer function. The step of obtaining force vectors comprises calculating force vectors using only information relating to behavior of markers neighboring region A1 of a position A where it is desired to obtain force vectors.
Abstract:
A method and apparatus for measuring strain on a surface of a substrate utilizes a substrate surface coated with at least one coating layer. The coating layer provides both luminescence and photoelasticity. The coating layer is illuminated with excitation light, wherein longer wavelength light is emitted having a polarization dependent upon stress or strain in the coating. At least one characteristic of the emitted light is measured, and strain (if present) on the substrate is determined from the measured characteristic.
Abstract:
A method and apparatus for measuring strain on a surface of a substrate utilizes a substrate surface coated with at least one coating layer. The coating layer provides both luminescence and photoelasticity. The coating layer is illuminated with excitation light, wherein longer wavelength light is emitted having a polarization dependent upon stress or strain in the coating. At least one characteristic of the emitted light is measured, and strain (if present) on the substrate is determined from the measured characteristic.