摘要:
A method is provided for fabricating a photolithography alignment mark structure. The method includes providing a substrate; forming a first grating, a second grating, a third grating and a fourth rating in the substrate; forming a photoresist layer on a surface of the substrate; obtaining a first alignment center along a first direction and a second alignment center alone a second direction based on the first grating and the fourth grating, respectively; providing a mask plate having a fifth grating pattern and a sixth grating pattern; aligning the mask plate with the substrate by using the first alignment center as an alignment center along the first direction and the second alignment center as an alignment center along the second direction; reproducing the fifth grating pattern and the sixth grating pattern in the photoresist layer; and forming a fifth grating and a sixth grating on the substrate by removing a portion of photoresist layer.
摘要:
A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
摘要:
A method is provided for fabricating a photolithography alignment mark structure. The method includes providing a substrate; thrilling a first grating, a second grating, a third grating and a fourth grating in the substrate; forming a photoresist layer on a surface of the substrate; obtaining a first alignment center along a first direction and a second alignment center along a second direction based on the first grating and the fourth grating, respectively; providing a mask plate having a fifth grating pattern and a sixth grating pattern; aligning the mask plate with the substrate by using the first alignment center as an alignment center along the first direction and the second alignment center as an alignment center along the second direction; reproducing the fifth grating pattern and the sixth grating pattern in the photoresist layer: and forming a fifth grating and a sixth grating on the substrate by removing a portion of photoresist layer.
摘要:
A second set of superimposed gratings are superposed over a first set of superimposed gratings. The second set of gratings have a different periodicity from the first set of gratings or a different orientation. Consequently the first order diffraction pattern from the second set of superimposed gratings can be distinguished from the first order diffraction pattern from the first set of superimposed gratings.
摘要:
The invention relates to optical devices comprising a transparent substrate and a first transparent grating layer on the substrate, the grating layer comprising periodically alternating zones having different refractive indices. According to the invention, the device comprises a second transparent grating layer located on top of the first grating layer and also comprising periodically alternating zones having different refractive indices so that the zones of the first grating layer having higher refractive index are at least partly aligned with the zones of the second grating layer having lower refractive index and vice versa, the second grating layer reducing the amount of light diffracted to non-zero transmission orders. The invention allows for reducing the so-called rainbow effect for example in head-up displays (HUDs).
摘要:
An integrated optical device that combines a diffractive optical element (DOE) to provide beam combining for coherent beams and a spectral beam combination (SBC) grating for combining beams of differing wavelengths. The device includes a substrate where a periodic pattern for the DOE is formed in the top surface of the substrate in a first direction. A plurality of reflective layers are deposited on the substrate over the periodic pattern so that the layers follow the shape of the pattern. A top dielectric layer is deposited on the plurality of reflective layers so that the top dielectric layer also follows the shape of the periodic pattern. A periodic grating for the SBC is formed into the top dielectric layer in a second direction substantially orthogonal to the first direction.
摘要:
A first article has a surface bearing a diffraction grating that comprises a plurality of elevated regions and recessed regions and a reflective coating that provides reflective diffraction within the article but is sufficiently thick to prevent diffraction outside the article. Alternatively, the reflective coating can be arranged to also provide reflective diffraction outside the article.A second article has a surface bearing a diffraction grating that comprises a plurality of elevated regions and recessed regions. Either (i) at least a portion of each ridge, or (ii) at least portion of each trench, comprises a material differing with respect to its refractive index or with respect to its optical transmissivity.
摘要:
A display apparatus and a liquid crystal display device are provided. The display apparatus comprises a display device for displaying an image and a diffractive optical element. The diffractive optical element comprises pixel unit regions. Each of the pixel unit regions has a long pixel side and a short pixel side adjacent to each other. The diffractive optical element is disposed on a light emitting side of the display device and comprises first grating regions and second grating regions. The first grating regions have a first diffraction grating. The second grating regions have a second diffraction grating. An azimuth angle of the first diffraction grating is different from an azimuth angle of the second diffraction grating.
摘要:
In an embodiment, an optical pickup includes at least one light source for selectively emitting three light beams having blue, red, and infrared wavelengths, respectively, and an objective lens arranged so that each of the three light beams enters thereto. The objective lens includes a first grating, and a second grating formed in the same plane as the first grating. The first and second gratings each have phase steps arranged concentrically around a center axis of a lens in a region in which all the three light beams pass, and are different in phase step positions. The first grating diffracts the three light beams having the blue, red, and infrared wavelengths in a 2nd order, a 1st order, and the 1st order, respectively. On the other hand, the second grating diffracts the three light beams having the blue, red, and infrared wavelengths in the 1st order, the 1st order, and the 1st order, respectively. As a result, the three light beams having the blue, red, and infrared wavelengths, which have been transmitted through the first grating and the second grating, are diffracted in a 3rd order, the 2nd order, and the 2nd order, respectively.
摘要:
Three-dimensional grating device includes two (crossed) diffraction gratings, exhibits diffraction efficiency substantially independent of the incident polarization inside an optical communication spectral window from 1.5-1.6 μm. The gratings are characterized by different periods in two directions, chosen to support only one dispersive diffraction order in addition to the zero-(specular) order. Gratings may be orthogonal. Exemplary grating profiles include but are not limited to sinusoidal and truncated pyramidal (trapezoidal) profiles. A method for diffracting polarization independent light with 90% or higher efficiency. Applications include various wavelength control devices particularly useful in telecommunications.