Abstract:
A method and system for the insertion of local signals, including digital media advertisements, into statistically multiplexed streams is presented. The rate control and timing information is computed and is used to specify the insertion time and rate parameters for digital advertisements. In one embodiment, a maximum bit rate over the advertisement duration is specified. The maximum bit rate may be constant or may vary in time, such that high bit rate portions of the advertisement are supported. High bit rate portions of the advertisements in different program streams may be staggered, such that the total bandwidth required does not exceed a maximum, but allowing for high bit rate portions of advertisements. Custom bit rate profiles for advertisements may also be defined, with the profiles being defined at a high granularity or a low granularity.
Abstract:
A method of distributed statistical multiplexing of video data. The method includes generating a plurality of blocks forming a pre-processed video media corresponding to an original video media, the plurality of blocks including, for one or more sub-portions of the original video media, a plurality of interchangeable blocks that represent the sub-portion. Optionally, at least some of the blocks are transmitted to at least one multiplexer and reconstructed by the at least one multiplexer, for a plurality of communication channels, from at least some of the transmitted blocks.
Abstract:
Methods and apparatus for performing multiplexing of video or other content (e.g., programs) within a network using feed-back from a subsequent digital program insertion stage, and/or feed-forward information from a prior multiplexing stage. In one embodiment, the network comprises a hybrid fiber coax (HFC) cable network having headend and hub-based statistical multiplexing stages, and communication between the two stages is used to improve the visual quality performance and bandwidth utilization of the output multi-program stream during conditions where downstream content is inserted into the transport stream. Business methods associated with the various multiplexing features described above are also disclosed.
Abstract:
A method and apparatus to create and transmit transport multiplexes comprising one or more levels of service over a network. In one embodiment, the level of service comprises high definition (HD) content or programs, and the transmitted multiplexes are distributed over a plurality of downstream RF carriers in a cable network simultaneously. A head-end architecture for performing the multiplexing and distribution of multiple HD programs over the multiple carriers (i.e., in a “wideband” configuration) is disclosed. CPE having one or more wideband tuners is also disclosed, the CPE being adapted to receive the multiplexed HD content from the various RF carriers, and demultiplex it in order to permit decoding and subsequent viewing by the user. The use of multiple HD source programs with the multiplex advantageously provides for enhanced statistical multiplexing by providing a larger “pool” of constituent inputs and available carriers.
Abstract:
The present invention makes it possible to efficiently transmit data for statistical multiplexing which is required for control using statistical multiplexing. By utilizing private packets, respective encoding devices transmit encoding difficulties serving as the data for statistical multiplexing to a multiplexer (4) via the same transmission channels as encoded video data and audio data are transmitted. The multiplexer (4) conducts multiplexing processing on data supplied from the respective encoding devices at a first rate R1 larger than a transmission rate on a transmission channel of a subsequent stage, and outputs a transport stream (TSd) including the private packets to a statistical multiplexing computer. In addition, the multiplexer (4) conducts multiplexing processing on data obtained by removing the private packets, at a second rate R2 which is equal to the transmission rate on the transmission channel of the subsequent stage, and outputs a transport stream (TSm) which does not include the private packets to the transmission channel of the subsequent stage.
Abstract:
An array encoding system and method for use with high definition digital video data streams includes method and means for analyzing the incoming data stream, splitting the data stream in accordance with video complexity or other criteria, encoding each of the subsidiary data streams in accordance with a desired encoding standard, and combining the data streams to generate an output. The encoding system and method is particularly suited to encoding data streams to provide an output with is substantially consistent with the H.264 video communications standard. The system and method are scalable.
Abstract:
An advanced multiplexer designed and optimized for next generation on-demand video distribution is described. Features and capabilities include low-latency client interactions, quality of service management, session based encryption management, support for multiple video formats, and support for multiple video decoding standards. Indicators are embedded in new video segments to identify start-of-segment transition points, enabling rapid transitions from one video segment to another. Low-latency operation is achieved by rapid switching, and by coordinating flushing of video buffers and buffer restoration.
Abstract:
The invention provides a system and a method for providing a multiplexed sequence, the multiplexed sequence including at least one sequence of basic media data units/modified basic media data units, the system and method are responsive to at least one characteristics (such as quality, quality degradation, compression level and the like, a combination of at least two of the characteristics) of at least of some of the basic media data units. The invention provides a method for generating a multiplexed sequence, the method including the steps of: receiving at least one basic media data unit sequence; determining a modification priority of a plurality of basic media data units of the received at least one basic media data unit sequence; selecting basic media data units to be modified, in response to the modification priority; modifying each of the selected basic media data units to provide corresponding modified basic media data units; wherein a modified selected basic media data unit is smaller than the corresponding selected basic media data unit; replacing selected basic media data units with the corresponding modified basic media data units in response to a comparison between the basic media data units and the corresponding modified basic media data units to provide replacing basic media data units; and multiplexing replacing basic media data units and basic media data units that were not replaced to provide the multiplexed sequence.