Abstract:
A liftgate force control assembly (20) adjusts the force required to move a liftgate (12) that is pivotally secured to a motor vehicle (10) using a hinge (14). The liftgate force control assembly includes a track (42) that is fixedly secured to the motor vehicle. A follower (46) is movably secured to the track. A strut (34, 36) has a movable end (26, 28) and a secured end (30, 32). The secured end (30, 32) is pivotally secured to the liftgate (12) and the movable end (26, 28) is pivotally secured to the follower (46). The strut (34, 36) defines a moment with respect to the hinge that secures the liftgate to the motor vehicle. A motor (50) is connected to the follower (46) to move the follower (46) along the track (42) changing the moment of the strut such that the force required to move the liftgate (12) changes as the moment changes.
Abstract:
An upwardly acting sectional door (24), including a plurality of panels (40), body portions (50) of the panels constructed of a flexible polymeric material and having a front surface (55), a cladding (80) covering the front surface of the body portions and having hooks (83, 84) at the upper and lower edges thereof, a hinge member (51) at an edge of the body portion operatively engaging the hooks of adjacent of the panels to provide relative pivotal motion between adjacent panels. Another embodiment is an upwardly acting sectional pan door (224) including, a plurality of panels (240), facers (250) of the panels defining a front surface of the door and having cooperatively engaging couplers (270) at the upper and lower edges thereof; stiles (280) at the ends of the facers receiving and attached to the facers, and hinge assemblies (290) located at the end stiles to provide relative pivotal motion between the stiles and the couplers of adjacent panels.
Abstract:
A lock latch mechanism disposed within a powered locking device of a transit vehicle door system for maintaining a lock lever in an unlock position without the aid of the lock actuator. The lock latch mechanism includes a lock latch lever biased for engagement with an unlock cam through the use of a bias spring. The lock latch mechanism further includes a reset lever assembly engaging such lock latch lever during the door closing motion to allow movement of the lock lever form such unlocking position into such locking position to maintain at least one door of the transit vehicle in the fully closed and lock position. A manual release lever is provided to move the lock lever from such locking position into such unlocking position enabling the lock latch mechanism to maintain the lock lever in such unlocked position.
Abstract:
In a submergence-detecting power-window apparatus, with a submergence-detecting circuit put in an inoperative state, a control unit turns on one of multiple control switches corresponding to the operation carried out on the window-opening-and-closing switch, a switch control unit applies a control voltage to a motor-driving unit through the turned-on control switch to drive the window-opening-and-closing motor in order to open or close the window; and with the submergence-detecting circuit put in an operative state by the car's submergence, a turned-on state of any one of the control switches is made ineffective and an operation carried out on the submergence-time window-opening switch causes a control voltage to be supplied to the motor-driving unit in order to open the window.
Abstract:
A door panel assembly includes a panel with a window regulator mounted on one side and a power mechanism mounted on an opposite side. The panel has a first alignment feature for aligning the window regulator relative to the panel and a second alignment feature for aligning the power mechanism relative to the panel. The first and second alignment features facilitate alignment of the window regulator and the power mechanism to each other. Further, the first and second alignment features allow initial assembly of one of the window regulator or power mechanism components to the panel with a subsequent assembly of the remaining component to the panel without having to hold the first component in place.
Abstract:
A system for raising and lowering a sectional overhead door between an open position and a closed position including, a counterbalance system adapted to be connected to the door, an operator motor assembly mounted proximate to the sectional overhead door in the closed position of the sectional overhead door, at least a portion of the operator motor assembly movable between a door operating position and a door locking position, and a locking assembly (370) having an engaged position to hold the motor assembly in the operating position and a disengaged position to release the motor assembly allowing it to move to the door locking position. The system may be provided with a remote light assembly having a switchable light source in sensing communication with the operator motor such that operation of the motor activates the light source. The system is further provided with a handle assembly (515) operatively engaging the motor assembly (40) and counterbalance system (30) to selectively disconnect the motor assembly (40) from the counterbalance system (30), whereby urging of a rotatable handle (516) to a disconnect position (516null) allows the door (D) to be manually freely moveable with the aid of the counterbalance system (30).
Abstract:
A system for raising and lowering a sectional overhead door between an open position and a closed position including, a counterbalance system adapted to be connected to the door, an operator motor assembly mounted proximate to the sectional overhead door in the closed position of the sectional overhead door, at least a portion of the operator motor assembly movable between a door operating position and a door locking position, and a locking assembly (370) having an engaged position to hold the motor assembly in the operating position and a disengaged position to release the motor assembly allowing it to move to the door locking position. The system may be provided with a remote light assembly having a switchable light source in sensing communication with the operator motor such that operation of the motor activates the light source. The system is further provided with a handle assembly (515) operatively engaging the motor assembly (40) and counterbalance system (30) to selectively disconnect the motor assembly (40) from the counterbalance system (30), whereby urging of a rotatable handle (516) to a disconnect position (516null) allows the door (D) to be manually freely moveable with the aid of the counterbalance system (30).
Abstract:
An automated closure assembly (20) is disclosed for a motor vehicle (10). A lateral linkage is connected to the drive mechanism (25) receiving the rotational force and translates the rotational force of the drive mechanism into a linear force to move the door between the open position and an intermediate position between the open position and the closed position. The automated closure assembly also includes a secondary linkage that is connected to both the lateral linkage and the drive mechanism. The secondary linkage translates the rotational force into a linear force to move the door between the intermediate position and the open position such that the door is able to move to its open position past the opening within which the lateral linkage extends.
Abstract:
A door is moved in an opening direction at a first speed until the door reaches a decelerating area. A moving speed of the door in the opening direction is decelerated from the first speed to a second speed being lower than the first speed while the door has been moved in the decelerating area. The movement of the door is stopped when the door is moved beyond the decelerating area, the door comes in contact with an obstacle, and the moving speed of the door becomes lower than a predetermined speed corresponding to an open position of the door by a predetermined threshold value.
Abstract:
The present system includes various mechanisms and devices which may be used to automatically open and close a window. In cooperation with the various mechanisms, a remote controller may be operated to accuate the mechanisms and devices without manual manipulation. In addition to the window mechanism being automatically operated, the system may also operate to lock the window structure to prevent unnecessary stress and overload to the motor, or to prevent unauthorized access and entry through the window.