Abstract:
The invention relates to a test method comprising an electrical connection contact on the support of a substrate of the semiconductor-on-insulator type.This method is remarkable in that it comprises the steps of: a) taking a substrate of the semiconductor-on-insulator type comprising a support substrate entirely covered with an insulator layer and an active layer, a portion of the insulator layer being buried between the active layer and the front face of the support substrate, b) removing a portion of the insulator layer that extends at the periphery of the front face of the support substrate and/or that extends on its rear face, so as to delimit at least one insulator-free accessible area of the support substrate, while retaining at least one portion of the insulator layer on the rear face, c) applying an electrical voltage to the accessible area in order to make the electrical connection contact.
Abstract:
In one embodiment, the disclosure relates to an electronic device successively comprising from its base to its surface: (a) a support layer, (b) a channel layer adapted to contain an electron gas, (c) a barrier layer and (d) at least one ohmic contact electrode formed by a superposition of metallic layers, a first layer of which is in contact with the barrier layer. The device is remarkable in that the barrier layer includes a contact region under the ohmic contact electrode(s). The contact region includes at least one metal selected from the metals forming the superposition of metallic layers. Furthermore, a local alloying binds the contact region and the first layer of the electrode(s).
Abstract:
The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
Abstract:
A method for minimizing or avoiding contamination of a receiving handle wafer during transfer of a thin layer from a donor wafer. This method includes providing a donor wafer and a receiving handle wafer, each having a first surface prepared for bonding and a second surface, with the donor wafer providing a layer of material to be transferred to the receiving handle wafer. Next, at least one of the first surfaces is treated to provide increased bonding energy when the first surfaces are bonded together; the surfaces are then bonded together to form an intermediate multilayer structure; and a portion of the donor wafer is removed to transfer the thin layer to the receiving handle wafer and form the semiconductor structure. This method avoids or minimizes contamination of the second surface of the receiving handle wafer by treating only the first surface of the donor wafer prior to bonding by exposure to a plasma, and by conducting any thermal treatments after plasma activation at a temperature of 300° C. to 500° C. in order to avoid diffusion of impurities into the transfer layer.
Abstract:
The invention relates to a method of trimming a structure that includes a first wafer bonded to a second wafer, with the first wafer having a chamfered edge. The method includes a first step of trimming the edge of the first wafer by mechanical machining over a predetermined depth in the first wafer. This first trimming step is followed by a second step of non-mechanical trimming over at least the remaining thickness of the first wafer.
Abstract:
Methods of fabricating semiconductor structures and devices include bonding a seed structure to a substrate using a glass. The seed structure may comprise a crystal of semiconductor material. Thermal treatment of the seed structure bonded to a substrate using a glass may be utilized to control the strain state within the seed structure. The seed structure may be placed in a state of compressive strain at room temperature. The seed structure bonded to the glass may be used for growth of semiconductor material, or, in additional methods, a seed structure may be bonded to a first substrate using a glass, thermally treated to control the strain state within the seed structure and a second substrate may be bonded to an opposite side of the seed structure using a non-glassy material.
Abstract:
Reconditioned donor substrates that include a remainder substrate from a donor substrate wherein the remainder substrate has a detachment surface where a transfer layer was detached and an opposite surface; and an additional layer deposited upon the opposite surface of the remainder substrate to increase its thickness and to form the reconditioned substrate. The reconditioned substrate is recycled as a donor substrate for fabricating compound material wafers and is typically made from gallium nitride donor substrates.
Abstract:
A method is presented for cutting an assembly that includes two layers of material having a first surface and a second surface. The method includes providing a weakened interface between the two layers that defines an interface ring about the periphery of the assembly, providing a high-pressure zone at the interface ring, and providing at least one controllable low-pressure zone in the vicinity of at least one of the first surface and the second surface. The technique also includes supplying the high-pressure zone with a controllable high-pressure force, and attacking the interface ring with at least one mechanical force in combination with the high-pressure force to cut the assembly.
Abstract:
A method and/or system are provided for producing a structure comprising a thin layer of semiconductor material on a substrate. The method includes creating an area of embrittlement in the thickness of a donor substrate, bonding the donor substrate with a support substrate and detaching the donor substrate at the level of the area of embrittlement to transfer a thin layer of the donor substrate onto the support substrate. The method also includes thermal treatment of this resulting structure to stabilize the bonding interface between the thin layer and the substrate support. The invention also relates to the structures obtained by such a process.
Abstract:
This invention relates to a method for producing a substrate by transferring a layer of a material from a donor substrate to a support substrate, and then by removing a part of the layer of material to form the thin layer. The step of removing a part of the layer of material to form the thin layer comprises forming an amorphous layer in a part of the thin layer, and then recrystallizing the amorphous layer.