Abstract:
Oilseed plants which have been transformed to produce arachidonic acid, recombinant constructs used in such transformations, methods for producing arachidonic acid in a plant are described and uses of oils and seeds obtained from such transformed plants in a variety of food and feed applications are described.
Abstract:
The present invention relates to mutant Δ8 desaturase genes, which have the ability to convert eicosadienoic acid [20:2 ω-6, EDA] to dihomo-γ-linolenic acid [20:3, DGLA] and/or eicosatrienoic acid [20:3 ω-3, ETrA] to eicosatetraenoic acid [20:3 ω-3, ETA]. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ8 desaturase along with methods of making long-chain polyunsaturated fatty acids (PUFAs) using these mutant Δ8 desaturases in plants and oleaginous yeast are disclosed.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-5 desaturase along with a method of making long chain polyunsaturated fatty acids (PUFAs) using this delta-5 desaturase in plants and oleaginous yeast are disclosed.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-8 desaturases in plants and oleaginous yeast.
Abstract:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
Abstract:
The present invention relates to fungal Δ-15 fatty acid desaturases that are able to catalyze the conversion of linoleic acid (18:2, LA) to alpha-linolenic acid (18:3, ALA). Nucleic acid sequences encoding the desaturases, nucleic acid sequences which hybridize thereto, DNA constructs comprising the desaturase genes, and recombinant host plants and microorganisms expressing increased levels of the desaturases are described. Methods of increasing production of specific omega-3 and omega-6 fatty acids by over-expression of the Δ-15 fatty acid desaturases are also described herein.
Abstract:
This invention is in the field of biotechnology, in particular, this pertains to polynucleotide sequences encoding membrane bound O-acyltransferase genes and the use of these acyltransferases for altering fatty acid profiles in oilseed plants. Methods for increasing elongation and desaturation conversion efficiencies are also disclosed.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding a delta-8 desaturase along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using this delta-8 desaturase in plants and oleaginous yeast are disclosed.
Abstract:
Transgenic soybean seed having increased total fatty acid content of at least 10% and altered fatty acid profiles when compared to the total fatty acid content of non-transgenic, null segregant soybean seed are described. DGAT genes from oleaginous organisms are used to achieve the increase in seed storage lipids.
Abstract:
Oilseed plants which have been transformed to produce arachidonic acid, recombinant constructs used in such transformations, methods for producing arachidonic acid in a plant are described and uses of oils and seeds obtained from such transformed plants in a variety of food and feed applications are described.