Abstract:
A solid-state image sensing apparatus with a wide dynamic range, and a high performance, and further, a small size, and a low cost and its driving method are provided. A timing generator, before it supplies a reset pulse (134) to a reset gate (128), has a sample hold circuit (2) held an output voltage of a buffer circuit (130). In this reset stage, in case that the amount of incident light to a photo diode (122) is large, electric charges which the photo diode (122) generated overflow from the photo diode (122) and flow into an FD part (123), and further, overflow also in the FD part (124) and flow out to an electric source Vdd. At this time, a voltage of the FD part (124) is determined by a size of a current due to electric charges which flow out to the electric source, but since a current flowing in a channel is small and the reset gate (128) operates in a sub-threshold region, a voltage of the FD part (124) becomes a value which corresponded to logarithm of a current value. Thus, a voltage which the sample hold circuit (2) holds becomes a value which corresponded to logarithm of the amount of light.
Abstract:
A back-illuminated type solid-state imaging device including (a) a semiconductor layer on a front surface side of a semiconductor substrate with an insulation film between them; (b) a photoelectric conversion element that constitutes a pixel in the semiconductor substrate; (c) at least part of transistors that constitute the pixel in the semiconductor film; and (d) a rear surface electrode to which a voltage is applied on the rear surface side of the semiconductor substrate, wherein, (1) a semiconductor layer of an opposite conduction type to a charge accumulation portion of the photoelectric conversion element is formed in the semiconductor substrate under the insulation film, and (2) the same voltage as the voltage applied to the rear surface electrode is applied to the semiconductor layer.
Abstract:
There is used an XY address type solid-state image pickup element (for example, a MOS type image sensor) in which two rows and two columns are made a unit, and color filters having a color coding of repetition of the unit (repetition of two verticals (two horizontals) are arranged, and when a thinning-out read mode is specified, a clock frequency of a system is changed to 1/9, and on the basis of the changed clock frequency, a pixel is selected every three pixels in both a row direction and a column direction to successively read out a pixel signal.
Abstract:
A back-illuminated type solid-state imaging device including (a) a semiconductor layer on a front surface side of a semiconductor substrate with an insulation film between them; (b) a photoelectric conversion element that constitutes a pixel in the semiconductor substrate; (c) at least part of transistors that constitute the pixel in the semiconductor film; and (d) a rear surface electrode to which a voltage is applied on the rear surface side of the semiconductor substrate, wherein, (1) a semiconductor layer of an opposite conduction type to a charge accumulation portion of the photoelectric conversion element is formed in the semiconductor substrate under the insulation film, and (2) the same voltage as the voltage applied to the rear surface electrode is applied to the semiconductor layer.
Abstract:
Solid-state image pickup device and processing method, with A/D conversion on pixel signals read from a pixel array part that effectively achieves reductions in power consumption, size and price while retaining a high-quality image output. The device includes a pixel array part, a CDS (correlated double sampling) circuit, and an A/D converter. A pixel signal read via a signal line is subjected to noise elimination processing in the CDS circuit, and is then inputted into the A/D converter. The A/D converter includes a ΔΣ modulator and a digital filter to perform highly accurate A/D conversion. The A/D converter can also be provided at the front stage of the CDS circuit.
Abstract translation:固态图像拾取装置和处理方法,对从像素阵列部分读取的像素信号进行A / D转换,有效地实现功率消耗,尺寸和价格的降低,同时保持高质量的图像输出。 该器件包括像素阵列部分,CDS(相关双采样)电路和A / D转换器。 通过信号线读取的像素信号在CDS电路中进行噪声消除处理,然后被输入到A / D转换器。 A / D转换器包括&Dgr& 调制器和数字滤波器,以执行高精度的A / D转换。 A / D转换器也可以在CDS电路的前级提供。
Abstract:
In a solid-state image pickup apparatus having a pixel array unit composed by two-dimensionally arranging pixels for detecting a physical quantity in a row-column manner, pixel signals of a plurality of systems having different sensitivities are read from the pixel array unit in an analog manner, the pixel signals of the plurality of systems are amplified at respective basis amplification rates when a gain setting of the analog pixel signals is lower than a predetermined gain, and a pixel signal of at least one system having a high sensitivity among the plurality of systems is amplified at a plurality of amplification rates including an amplification rate higher than a basis amplification rate of the system having the high sensitivity when the gain setting is equal to or higher than the predetermined gain.
Abstract:
A solid state imaging device able to make noise from a nonselected row small, able to suppress occurrence of vertical stripes in a bright scene, not requiring charging including a floating node capacity via a reset transistor, able to prevent an increase of a driver size of a drain line, and able to secure high speed operation and a camera system using this as the imaging device are provided.An MOS type solid state imaging device in which unit pixels 10 each having a photodiode 11, a transfer transistor 12 for transferring the signal of the photodiode 11 to a floating node N11, an amplifier transistor 13 for outputting the signal of the floating node N11 to a vertical signal line 22, and a reset transistor 14 for resetting the floating node N11 are arrayed in a matrix and in which a gate voltage of the reset transistor 14 is controlled by three values of a power source potential (for example 3V), a ground potential (0V), and a negative power source potential (for example −1V).
Abstract:
Forming a back-illuminated type CMOS image sensor, includes process for formation of a registration mark on the wiring side of a silicon substrate during formation of an active region or a gate electrode. A silicide film using an active region may also be used for the registration mark. Thereafter, the registration mark is read from the back side by use of red light or near infrared rays, and registration of the stepper is accomplished. It is also possible to form a registration mark in a silicon oxide film on the back side (illuminated side) in registry with the registration mark on the wiring side, and to achieve the desired registration by use of the registration mark thus formed.
Abstract:
A solid-state image pickup device has a differential output configuration for an output stage thereof and an IC in a next stage has a differential amplifier configuration for an input stage thereof. An output buffer unit buffers and outputs a digital signal from a horizontal bus line. At this time, in addition to the normal video signal, the output buffer unit generates an inverted output of the normal video signal. The normal video signal and the inverted output are outputted from a video signal output terminal and an inverted video signal output terminal, respectively, to the outside of a chip. Further, a clock, which is supplied from a timing generator to the output buffer unit, also is buffered and outputted to the outside together with an inverted clock. A differential amplifier is used in an input stage of an IC in a next stage, whereby even signals having blunter waveforms can be recognized. This enables an increase in the speed of the system, an addition of capacitance to signal paths, or a reduction in size of the output buffer unit of the solid-state image pickup device.
Abstract:
A back-illuminated type solid-state imaging device is provided in which an electric field to collect a signal charge (an electron, a hole and the like, for example) is reliably generated to reduce a crosstalk.The back-illuminated type solid-state imaging device includes a structure 34 having a semiconductor film 33 on a semiconductor substrate 31 through an insulation film 32, in which a photoelectric conversion element PD that constitutes a pixel is formed in the semiconductor substrate 31, at least part of transistors 15, 16, and 19 that constitute the pixel is formed in the semiconductor film 33, and a rear surface electrode 51 to which a voltage is applied is formed on the rear surface side of the semiconductor substrate 31.