Lubricant composition
    71.
    发明授权

    公开(公告)号:US11021673B2

    公开(公告)日:2021-06-01

    申请号:US16461024

    申请日:2017-11-16

    Abstract: The invention provides a lubricating oil composition being a lubricating oil composition containing a base oil composition which includes a lubricant base oil belonging to Group 3 of the base oil categories specified by the American Petroleum Institute (API) and a comb-like polymethacrylate-based viscosity index improver wherein the weight-halving temperature is not less than 310° C., and the sulphur content in the aforementioned lubricating oil composition is not more than 0.3 weight % in terms of the total weight of the aforementioned lubricating oil composition, and the aforementioned lubricating oil composition has an SAE viscosity grade of 0W-20, 5W-20 or 5W-30, a viscosity index of not less than 185 and a high-temperature high-shear viscosity at 100° C. of not more than 7.5 mPa·s.

    Process for preparing a catalyst and use thereof

    公开(公告)号:US11014084B2

    公开(公告)日:2021-05-25

    申请号:US16303707

    申请日:2017-05-23

    Abstract: The present invention provides a process for preparing a catalyst, wherein said process comprises:—(i) preparing a mixture of one or more aromatic alcohol monomers and/or non-aromatic monomers, solvent, polymerization catalyst, crosslinking agent, suspension stabilizing agent and one or more metal salts, under conditions sufficient to produce polymeric beads doped with one or more metals or salts thereof; (ii) carbonizing, activating and then reducing the polymeric beads produced in step (i) to produce metal nanoparticles-doped porous carbon beads; (iii) subjecting the metal nanoparticles-doped porous carbon beads produced in step (ii) to chemical vapour deposition in the presence of a carbon source to produce metal nanoparticles-doped porous carbon beads comprising carbon nanofibers; and (iv) doping the metal nanoparticles-doped porous carbon beads comprising carbon nanofibers produced in step (iii) with an oxidant; catalyst prepared by said process; and a process for treating waste water from an industrial process for producing propylene oxide, which process comprises subjecting the waste water to a catalytic wet oxidation treatment in the presence of said catalyst.

    PROCESS FOR THE PREPARATION OF SYNGAS

    公开(公告)号:US20210107786A1

    公开(公告)日:2021-04-15

    申请号:US16644399

    申请日:2018-09-04

    Abstract: A process for preparing a syngas from a methane comprising gas includes reacting the methane comprising gas with an oxidising gas at an operating temperature in the range of 1150 to 1370° C. by means of non-catalytic partial oxidation. A hot raw syngas mixture having a methane content higher than the methane content in a state of thermodynamic equilibrium at the operating temperature applied is passed through a bed of methane oxidation catalyst for oxidising methane with steam formed in the non-catalytic POX into carbon monoxide and hydrogen. The methane oxidation catalyst has at least one catalytically active metal supported on a refractory oxide support material where soot particles present in the hot raw syngas mixture are retained. The retained soot particles are converted to carbon monoxide. Soot depleted syngas is recovered in a state of thermodynamic equilibrium.

    Catalyst bed and method for reducing nitrogen oxides

    公开(公告)号:US10960352B2

    公开(公告)日:2021-03-30

    申请号:US16064169

    申请日:2016-12-20

    Abstract: A catalyst bed comprising a ceramic or metallic foam comprising one or more NOx reduction catalysts is described. Further, a method for reducing the concentration of NOx in a dust containing gas stream comprising: a) passing a first gas stream containing NOx into a contacting zone; b) contacting the first gas stream with a ceramic or metallic foam catalyst bed having one or more flow paths through the catalyst bed wherein the ceramic or metallic foam comprises a NOx reduction catalyst to produce a second gas stream with a reduced NOx concentration; and c) passing the second gas stream out of the contacting zone wherein the first gas stream has a dust concentration of at least 5 mg/Nm3 and the second gas stream comprises at least 50% of the amount of dust in the first gas stream.

    Process to prepare normal paraffins

    公开(公告)号:US10934492B2

    公开(公告)日:2021-03-02

    申请号:US16346799

    申请日:2017-11-02

    Abstract: A process for preparing normal paraffins involves separating a Fischer-Tropsch product stream to obtain first gaseous and liquid hydrocarbon streams. The first gaseous hydrocarbon stream is cooled and separated to obtain a second liquid hydrocarbon stream and a third liquid hydrocarbon stream, which are hydrogenated. The hydrogenated liquid hydrocarbon stream is separated by distillation to obtain a hydrogenated normal paraffin fraction comprising 5 to 9 carbon atoms, a hydrogenated normal paraffin fraction comprising 10 to 13 carbon atoms, a hydrogenated normal paraffin fraction comprising 14 to 18 carbon atoms, and a hydrogenated normal paraffin fraction comprising 19 to 35 carbon atoms.

    Flow velocity meter and method of measuring flow velocity of a fluid

    公开(公告)号:US10920581B2

    公开(公告)日:2021-02-16

    申请号:US16312679

    申请日:2017-06-30

    Abstract: A flow velocity meter, for measuring flow velocity of a fluid, has a distributed acoustic sensor along aq longitudinal direction, which has a distributed sensing element. The distributed sensing element is acoustically coupled to a distributed fluid-contact surface via a distributed acoustic path extending between the distributed fluid-contact surface and the distributed sensing element. Moreover the distributed acoustic path is fully bypassing the fluid. At least a part of the fluid-contact surface is provided with a flow-disturbing surface texture having a surface relief with a pre-determined pattern in said longitudinal direction. Acoustic flow noise, emitted as a result of the fluid flowing along and in contact with the flow-disturbing surface texture, is picked up by the distributed sensing element as a distributed acoustic signal.

Patent Agency Ranking