Method and device for fast-charging of rechargeable batteries
    71.
    发明授权
    Method and device for fast-charging of rechargeable batteries 有权
    充电电池快速充电的方法和装置

    公开(公告)号:US09368984B2

    公开(公告)日:2016-06-14

    申请号:US14811933

    申请日:2015-07-29

    Applicant: StoreDot Ltd.

    Abstract: A system and method for fast charging of a lithium-ion battery, including: continuously monitoring a state of charge (SOC) of the lithium-ion battery; during a normal mode of operation and upon detecting that the battery is at the predetermined low charge level, discontinuing the discharge; upon detecting that the battery is connected to a charger, providing charging rate of at least 4 C for at least part of charging; and upon detecting that the battery, while connected to the charger is at the predetermined high charge level, discontinue the charging, wherein the predetermined low charge level and the predetermined high charge level define a consumable capacity of the battery, wherein the consumable capacity is below 50% of the full capacity of the battery.

    Abstract translation: 一种用于锂离子电池快速充电的系统和方法,包括:连续监测锂离子电池的充电状态(SOC); 在正常操作模式和检测到电池处于预定的低充电水平时,停止放电; 一旦检测到电池连接到充电器,至少提供充电的充电率至少为4℃; 并且在检测到电池在连接到充电器处于预定的高充电水平时停止充电,其中预定的低充电水平和预定的高充电水平限定了电池的可消耗容量,其中消耗容量低于 电池容量的50%。

    METHOD AND DEVICE FOR FAST-CHARGING OF RECHARGEABLE BATTERIES
    73.
    发明申请
    METHOD AND DEVICE FOR FAST-CHARGING OF RECHARGEABLE BATTERIES 有权
    用于快速充电可充电电池的方法和装置

    公开(公告)号:US20160036255A1

    公开(公告)日:2016-02-04

    申请号:US14811933

    申请日:2015-07-29

    Applicant: StoreDot Ltd.

    Abstract: A system and method for fast charging of a lithium-ion battery, including: continuously monitoring a state of charge (SOC) of the lithium-ion battery; during a normal mode of operation and upon detecting that the battery is at the predetermined low charge level, discontinuing the discharge; upon detecting that the battery is connected to a charger, providing charging rate of at least 4C for at least part of charging; and upon detecting that the battery, while connected to the charger is at the predetermined high charge level, discontinue the charging, wherein the predetermined low charge level and the predetermined high charge level define a consumable capacity of the battery, wherein the consumable capacity is below 50% of the full capacity of the battery.

    Abstract translation: 一种用于锂离子电池快速充电的系统和方法,包括:连续监测锂离子电池的充电状态(SOC); 在正常操作模式和检测到电池处于预定的低充电水平时,停止放电; 一旦检测到电池连接到充电器,至少提供一部分充电的充电率至少为4C; 并且在检测到电池在连接到充电器处于预定的高充电水平时停止充电,其中预定的低充电水平和预定的高充电水平限定了电池的可消耗容量,其中消耗容量低于 电池容量的50%。

    Diselenoester electrolyte additives for fast charging lithium ion batteries

    公开(公告)号:US11575156B2

    公开(公告)日:2023-02-07

    申请号:US16774005

    申请日:2020-01-28

    Applicant: StoreDot Ltd.

    Abstract: Lithium ion batteries and electrolytes therefor are provided, which include electrolyte additives having dithioester functional group(s) that stabilize the SEI (solid-electrolyte interface) at the surfaces of the anode material particles, and/or stabilize the CEI (cathode electrolyte interface) at the surfaces of the cathode material particles, and/or act as oxygen scavengers to prevent cell degradation. The electrolyte additives having dithioester functional group(s) may function as polymerization controlling and/or chain transfer agents that regulate the level of polymerization of other electrolyte components, such as VC (vinyl carbonate) and improve the formation and operation of the batteries. The lithium ion batteries may have metalloid-based anodes including mostly Si, Ge and/or Sn as anode active material particles.

    Same-solvent preparation of organic anode slurries

    公开(公告)号:US11276850B2

    公开(公告)日:2022-03-15

    申请号:US16732528

    申请日:2020-01-02

    Applicant: Storedot Ltd.

    Abstract: Methods of preparing Si-based anode slurries and anode made thereof are provided. Methods comprise coating silicon particles within a size range of 300-700 nm by silver and/or tin particles within a size range of 20-500 nm, mixing the coated silicon particles with conductive additives and binders in a solvent to form anode slurry, and preparing an anode from the anode slurry. Alternatively or complementarily, silicon particles may be milled in an organic solvent, and, in the same organic solvent, coating agent(s), conductive additive(s) and binder(s) may be added to the milled silicon particles—to form the Si-based anode slurry. Alternatively or complementarily, milled silicon particles may be mixed, in a first organic solvent, with coating agent(s), conductive additive(s) and binder(s)—to form the Si-based anode slurry. Disclosed methods simplify the anode production process and provide equivalent or superior anodes.

Patent Agency Ranking