Abstract:
A method includes, in a memory system that includes multiple memory units, holding information indicative of respective programming durations of the memory units. Data is stored in a stripe that includes a plurality of the memory units, by programming the memory units in the stripe in an order that is set based on the information.
Abstract:
A method includes providing data for storage in a memory, which includes multiple analog memory cells arranged in a three-dimensional (3-D) configuration having a first dimension associated with bit lines, a second dimension associated with word lines, and a third dimension associated with sections. The data is stored in the memory cells in accordance with a programming order that alternates among the sections, including storing a first portion of the data in a first section, then storing a second portion of the data in a second section different from the first section, and then storing a third portion of the data in the first section.
Abstract:
A method for data storage in a memory that includes multiple analog memory cells, includes defining, based on a characteristic of the memory cells, an uneven wear leveling scheme that programs and erases at least first and second subsets of the memory cells with respective different first and second Programming and Erasure (P/E) rates. Data is stored in the memory in accordance with the uneven wear leveling scheme.
Abstract:
An integrated circuit includes fuse readout logic and first and second sets of fuses. One of the sets includes one or more primary fuses whose burn states represent respective bit values, and the other of the sets includes one or more secondary fuses whose burn states are indicative of the bit values stored in the primary fuses. The fuse readout logic is configured to read the bit values by sensing the burn states of the primary fuses, and to conditionally correct the read bit values by sensing the burn states of one or more of the secondary fuses.
Abstract:
A method includes, in a plurality of memory cells that share a common isolation layer and store in the common isolation layer quantities of electrical charge representative of data values, assigning a first group of the memory cells for data storage, and assigning a second group of the memory cells for protecting the electrical charge stored in the first group from retention drift. Data is stored in the memory cells of the first group. Protective quantities of the electrical charge that protect from the retention drift in the memory cells of the first group are stored in the memory cells of the second group.
Abstract:
A method includes storing data encoded with an Error Correction Code (ECC) in analog memory cells, by buffering the data in a volatile buffer and then writing the buffered data to the analog memory cells while overwriting at least some of the data in the volatile buffer with success indications. Upon detecting a failure in writing the buffered data to the analog memory cells, recovered data is produced by reading both the volatile buffer and the analog memory cells, assigning reliability metrics to respective bits of the recovered data depending on whether the bits were read from the volatile buffer or from the analog memory cells, applying ECC decoding to the recovered data using the reliability metrics and reprogramming the recovered data.
Abstract:
A method includes communicating over an interface between a controller and multiple memory dies, which comprise respective on-die terminations (ODTs) that are each connectable to the interface by the controller. A plurality of termination settings are evaluated, each termination setting specifies a respective subset of the ODTs to be connected to the interface, so as to identify a preferred termination setting in which the communication quality with a given memory die meets a predefined criterion. Subsequent communication with the given memory die is performed while applying the preferred termination setting.
Abstract:
A method includes selecting a word line for programming in an array of analog memory cells that are arranged in rows associated with respective word lines and columns associated with respective bit lines. Word-line voltages, which program the memory cells in the selected word line, are applied to the respective word lines. Bit-line voltages, which cause one or more additional memory cells outside the selected word line to be programmed as a result of programming the selected word line, are applied to the respective bit lines. Using the applied word-line and bit-line voltages, data is stored in the memory cells in the selected word line and the additional memory cells are simultaneously programmed.
Abstract:
A method includes, in a memory that includes two or more memory units, storing a code word of an Error Correction Code (ECC) that is representable by a plurality of check equations, such that a first part of the code word is stored in a first memory unit and a second part of the code word is stored in a second memory unit. A subset of the check equations, which operate only on code word bits belonging to the first part stored in the first memory unit, is identified. The first part of the code word is retrieved from the first memory unit, and a count of the check equations in the identified subset that are not satisfied by the retrieved first part of the code word is evaluated. One or more readout parameters, for readout from the first memory unit, are set depending on the evaluated count.
Abstract:
A method includes storing data in a memory, which includes multiple strings of analog memory cells arranged in a three-dimensional (3-D) configuration having a first dimension associated with bit lines, a second dimension associated with word lines and a third dimension associated with sections, such that each string is associated with a respective bit line and a respective section and includes multiple memory cells that are connected to the respective word lines. For a group of the strings, respective values of a property of the strings in the group are evaluated. Source-side voltages are calculated for the respective strings in the group, depending on the respective values of the property, and respective source-sides of the strings in the group are biased with the corresponding source-side voltages. A memory operation is performed on the strings in the group while the strings are biased with the respective source-side voltages.