-
公开(公告)号:US11757744B2
公开(公告)日:2023-09-12
申请号:US17344477
申请日:2021-06-10
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Ahmed Mohamed Ahmed Abdelsalam , Rakesh Gandhi , Pablo Camarillo Garvia , Francois Clad
IPC: H04L43/0805 , H04L41/12 , H04L43/12 , H04L43/0852 , H04L43/106 , H04L45/12 , H04L45/42 , H04L45/741
CPC classification number: H04L43/0805 , H04L41/12 , H04L43/0852 , H04L43/106 , H04L43/12 , H04L45/123 , H04L45/42 , H04L45/741
Abstract: Techniques for optimizing technologies related to network path tracing and network delay measurements are described herein. Some of the techniques may include using an IPv6 header option and/or segment identifier field of a segment list or a TLV of a segment routing header as a telemetry data carrier. The techniques may also include using an SRv6 micro-segment (uSID) instruction to indicate to a node of a network that the node is to perform one or more path tracing actions and encapsulating the packet and forward. Additionally, the techniques may include using short interface identifiers corresponding to node interfaces to trace a packet path through a network. Further, the techniques may include using short timestamps to determine delay measurements associated with sending a packet through a network. In various examples, the techniques described above and herein may be used with each other to optimize network path tracing and delay measurement techniques.
-
公开(公告)号:US11736340B2
公开(公告)日:2023-08-22
申请号:US17342899
申请日:2021-06-09
Applicant: Cisco Technology, Inc.
Inventor: Peter Psenak , Lester C. Ginsberg , Ketan Jivan Talaulikar , Clarence Filsfils , Francois Clad , Stephane Litkowski
IPC: H04L12/24 , H04L41/0654 , H04L41/0631 , H04L41/0686
CPC classification number: H04L41/0654 , H04L41/0631 , H04L41/0686
Abstract: The present technology is directed to signaling unreachability of a network device, more specifically, a prefix of the network device in network that utilizes route summarization. A pulse trigger agent can detect an unreachability of at least one Provider Edge (PE) device in a network domain of a network and determine that a route summarization is being used within the network where the unreachability of the at least one PE device is hidden by the route summarization. A pulse distribution agent can transmit a failure message informing other PE devices of the unreachability of the at least one PE device.
-
公开(公告)号:US20230164063A1
公开(公告)日:2023-05-25
申请号:US17691016
申请日:2022-03-09
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Ahmed Mohamed Ahmed Abdelsalam , Rakesh Gandhi , Jisu Bhattacharya , Pablo Camarillo Garvia
Abstract: This disclosure describes techniques for detecting and monitoring paths in a network. The techniques include causing a source node to generate probe packets to traverse a multi-protocol label switching (MPLS) network, for instance. In some examples, the probe packets include entropy values that correspond to individual equal-cost multi-path (ECMP) paths of the network. The probe packets may be received at an SDN controller from a sink node after traversing the network. Analysis of the probe packets allow path discovery and mapping of the entropy values to ECMP paths. The mapping of discovered paths may be used for optimization of network monitoring activities, including second subsequent probe packets over particular ECMP paths based on the mapped entropy values.
-
公开(公告)号:US11652913B2
公开(公告)日:2023-05-16
申请号:US17836069
申请日:2022-06-09
Applicant: Cisco Technology, Inc.
Inventor: Patrice Brissette , Clarence Filsfils , Darren Dukes , Gaurav Dawra , Francois Clad , Pablo Camarillo Garvia
IPC: H04L69/22 , H04L69/324 , H04L45/00 , H04L67/10 , H04L45/02 , H04L45/50 , H04L61/5007 , H04L67/63 , H04L12/46 , H04L45/74 , H04L49/35 , H04L45/741 , H04L61/2503 , H04L101/659 , H04L101/00 , H04L43/028 , H04L9/40 , H04L45/745
CPC classification number: H04L69/22 , H04L12/4633 , H04L12/4641 , H04L45/04 , H04L45/14 , H04L45/34 , H04L45/50 , H04L45/74 , H04L45/741 , H04L49/35 , H04L61/5007 , H04L67/10 , H04L67/63 , H04L69/324 , H04L43/028 , H04L45/745 , H04L61/2503 , H04L63/0272 , H04L2101/00 , H04L2101/659 , H04L2212/00
Abstract: In one embodiment, Ethernet Virtual Private Network (EVPN) is implemented using Internet Protocol Version 6 (IPv6) Segment Routing (SRv6) underlay network and SRv6-enhanced Border Gateway Protocol (BGP) signaling. A particular route associated with a particular Internet Protocol Version 6 (IPv6) Segment Routing (SRv6) Segment Identifier (SID) is advertised in a particular route advertisement message of a routing protocol (e.g., BGP). The SID includes encoding representing a particular Ethernet Virtual Private Network (EVPN) Layer 2 (L2) flooding Segment Routing end function of the particular router and a particular Ethernet Segment Identifier (ESI), with the particular SID including a routable prefix to the particular router. The particular router receives a particular packet including the particular SID; and in response, the particular router performs the particular EVPN end function on the particular packet.
-
公开(公告)号:US11627094B2
公开(公告)日:2023-04-11
申请号:US16825168
申请日:2020-03-20
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Zafar Ali , Pablo Camarillo Garvia , Francois Clad
IPC: H04L47/6295 , H04L43/0888 , H04L47/10 , H04L47/24 , H04L47/70 , H04W76/11 , H04L41/12
Abstract: The present technology is directed to a system and method for implementing network resource partitioning and Quality of Service (QoS) separation through network slicing. Embodiments of the present invention describe scalable network slicing method based on defining Segment Routing Flexible Algorithm to represent a network slice and assigning a distinct QoS policy queue to each of the Flexible Algorithms configured on a network node. Therefore, scalable network slice based queuing is implemented wherein a single packet processing queue is assigned to each Flex-Algorithm based network slice. QoS policy queue may be implemented in a hierarchical fashion by differentiation between flow packets in a single QoS policy queue based on value of experimental bits in the header.
-
公开(公告)号:US20230076549A1
公开(公告)日:2023-03-09
申请号:US17987029
申请日:2022-11-15
Applicant: Cisco Technology, Inc.
Inventor: Rakesh Gandhi , Clarence Filsfils , Sagar Soni , Patrick Khordoc
Abstract: Techniques for in-situ passive performance measurement are described. In one embodiment, a method includes receiving a data packet at a first network element, determining whether measurement information is to be collected for the data packet, providing one or more measurement fields for the data packet based on a determination that measurement information is to be collected for the data packet in which at least one measurement field identifies a measurement type, and forwarding the data packet to a second network element. The method further includes determining, by the second network element, the measurement type for the data packet, and performing one or more actions based on the measurement type.
-
公开(公告)号:US11595441B2
公开(公告)日:2023-02-28
申请号:US16700838
申请日:2019-12-02
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Reshad Rahman , Eric Albin Voit
IPC: H04L9/40 , H04L41/0668 , H04L45/12 , H04L45/00
Abstract: In one embodiment, a method includes determining a secure path through a first plurality of network nodes within a network and determining an alternate secure path through a second plurality of network nodes within the network. The method also includes routing network traffic through the first plurality of network nodes of the secure path and detecting a failure in the secure path using single-hop BFD authentication. The method further includes rerouting the network traffic through the second plurality of network nodes of the alternate secure path.
-
78.
公开(公告)号:US11558288B2
公开(公告)日:2023-01-17
申请号:US16138650
申请日:2018-09-21
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Zafar Ali , Frank Brockners
IPC: H04L12/725 , H04L45/302 , H04L45/02 , H04L45/12 , H04L69/22
Abstract: The present technology provides a system and method for implementing targeted collection of in-situ Operation, Administration and Maintenance data from select nodes in a Segment Routing Domain. The selection is programmable and is implemented by setting an iOAM bit in the function arguments field of a Segment Identifier. In this way only the nodes associated with local Segment Identifiers (Function field of a Segment Identifier) with an iOAM argument bit are directed to generate iOAM data. The iOAM data generated by target nodes may be stored in TLV field of the segment routing header. The Segment Routing packet is then decapsulated at a Segment Routing egress node and the Header information with the collected iOAM data is sent to a controller entity for further processing, analysis and/or monitoring.
-
公开(公告)号:US11533258B2
公开(公告)日:2022-12-20
申请号:US17130336
申请日:2020-12-22
Applicant: Cisco Technology, Inc.
Inventor: Rakesh Gandhi , Clarence Filsfils , Sagar Soni , Patrick Khordoc
Abstract: Techniques for in-situ passive performance measurement are described. In one embodiment, a method includes receiving a data packet at a first network element, determining whether measurement information is to be collected for the data packet, providing one or more measurement fields for the data packet based on a determination that measurement information is to be collected for the data packet in which at least one measurement field identifies a measurement type, and forwarding the data packet to a second network element. The method further includes determining, by the second network element, the measurement type for the data packet, and performing one or more actions based on the measurement type.
-
公开(公告)号:US20220385573A1
公开(公告)日:2022-12-01
申请号:US17865125
申请日:2022-07-14
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Ahmed Mohamed Ahmed Abdelsalam , Francois Clad , Pablo Camarillo Garvia , Kiran Sasidharan Pillai
IPC: H04L45/741 , H04L45/42 , H04L45/00
Abstract: The present technology pertains to a group-based network policy using Segment Routing over an IPv6 dataplane (SRv6). After a source application sends a packet, an ingress node can receive the packet, and if the source node is capable, it can identify an application policy and apply it. The ingress node indicates that the policy has been applied by including policy bits in the packet encapsulation. When the packet is received by the egress node, it can determine whether the policy was already applied, and if so, the packet is forward to the destination application. If the egress node determines that the policy has not be applied the destination application can apply the policy. Both the ingress node and egress nodes can learn of source application groups, destination application groups, and applicable policies through communication with aspects of the segment routing fabric.
-
-
-
-
-
-
-
-
-