Abstract:
An audio amplifier circuit for providing an output signal to an audio transducer may include a power amplifier and a control circuit. The power amplifier may include an audio input for receiving an audio input signal, an audio output for generating the output signal based on the audio input signal, and a power supply input for receiving a power supply voltage, wherein the power supply voltage is variable among at least a first supply voltage and a second supply voltage greater than the first supply voltage and wherein the power supply voltage is generated by a configurable charge pump power supply. The control circuit may be configured to predict, based on one or more characteristics of a signal indicative of the output signal, an occurrence of a condition for changing the power supply voltage, and responsive to predicting the occurrence of the condition, change, at an approximate zero crossing of the signal indicative of the output signal, the power supply voltage.
Abstract:
A system may include a charge pump configured to boost an input voltage of the charge pump to an output voltage greater than the input voltage and a controller configured to control an output power of the charge pump to ensure that an input current of the charge pump is maintained below a current limit.
Abstract:
A method of increasing a multiplication ratio of a charge pump, the multiplication ratio defining a relationship between an output voltage of the charge pump and an input voltage of the charge pump, comprising: analyzing a first efficiency of the charge pump when the multiplication ratio is at a first ratio, calculating a second efficiency of the charge pump when the multiplication ratio is a second ratio lesser than the first ratio, and based on the first efficiency and the second efficiency, determining at least one of a target output power and a target output voltage at which to change the multiplication ratio from the second ratio to the first ratio.
Abstract:
In accordance with embodiments of the present disclosure, a system may include a series combination of a boost converter and a power converter coupled together in series, such that the series combination boosts an input voltage to the series combination to an output voltage greater than the input voltage such that a voltage boost provided by the series combination is greater than a voltage boost provided by the boost converter alone. The system may also include an amplifier, wherein an input of the amplifier is coupled to an output of the series combination of the boost converter and the power converter.
Abstract:
An audio amplifier circuit for providing an output signal to an audio transducer may include a power amplifier and a control circuit. The power amplifier may include an audio input for receiving an audio input signal, an audio output for generating the output signal based on the audio input signal, and a power supply input for receiving a power supply voltage, wherein the power supply voltage is variable among at least a first supply voltage and a second supply voltage greater than the first supply voltage. The control circuit may be configured to predict, based on one or more characteristics of a signal indicative of the output signal, an occurrence of a condition for changing the power supply voltage, and responsive to predicting the occurrence of the condition, change, at an approximate zero crossing of the signal indicative of the output signal, the power supply voltage.
Abstract:
A switching power stage for producing a load voltage may include a first processing path having a first output, a second processing path having a second output, a first plurality of switches comprising at least a first switch coupled between the first output and a first load terminal and a second switch coupled between the first output and the second load terminal, a second plurality of switches comprising at least a third switch coupled between the second output and the first load terminal and a fourth switch coupled between the second output and the second load terminal, and a controller configured to control switches in order to generate the load voltage as a function of an input signal such that one of the first switch and the second switch operates in a linear region of operation and one of the third switch and the fourth switch operates in a saturated region of operation for a predominance of a dynamic rage of the load voltage.
Abstract:
A switching power stage for producing a load voltage at a load output of the switching power stage, wherein the load output comprises a first load terminal having a first load voltage and a second load terminal having a second load voltage such that the load voltage comprises a difference between the first and the second load voltages, that may include: a power converter comprising a power inductor and a plurality of switches, wherein the power converter is configured to drive a power converter output terminal; a linear amplifier configured to drive a linear amplifier output terminal; and a controller for controlling the plurality of switches and the linear amplifier in order to generate the load voltage as a function of an input signal to the controller such that energy delivered to the load output is supplied predominantly by the power converter.
Abstract:
A method may include monitoring an input power supply, monitoring an inductance of an inductor of a boost converter, monitoring one or more other characteristics of the boost converter, and calculating a target peak inductor current based on the input power supply voltage, the inductance, the one or more other characteristics of the boost converter, and a target average current of the inductor during a switching cycle of the boost converter. A method may include monitoring an input power supply voltage, monitoring an inductance of an inductor of a boost converter, monitoring one or more other characteristics of the boost converter, and calculating an average current of the inductor during a switching cycle of the boost converter based on the input power supply voltage, the inductance, the one or more other characteristics of the boost converter, and a peak inductor current of the inductor.