摘要:
An example method for manufacturing a magneto-resistance effect element includes: forming a first magnetic layer; forming a first metallic layer, on the first magnetic layer, mainly containing an element selected from the group consisting of Cu, Au, Ag; forming a functional layer, on the first metallic layer, mainly containing an element selected from the group consisting of Si, Hf, Ti, Mo, W, Nb, Mg, Cr and Zr; forming a second metallic layer, on the functional layer, mainly containing Al; treating the second metallic layer by oxidizing, nitriding or oxynitiriding so as to form a current confined layer including an insulating layer and a current path with a conductor passing a current through the insulating layer; and forming, on the current confined layer, a second magnetic layer.
摘要:
A magneto-resistance effect element, a magneto-resistance effect head, a magnetic storage and a magnetic memory, in which noise caused by a spin-transfer torque is reduced, are provided. In a fixed magnetization layer or a free magnetization layer of a magneto-resistance effect element including the fixed magnetization layer, a spacer layer and the free magnetization layer; a layer containing one element selected from the group consisting of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, La, Hf, Ta, W, Re, Os, Ir, Pt and Au is disposed.
摘要:
A magnetoresistive element includes a magnetoresistive film including a magnetization pinned layer, a magnetization free layer, an intermediate layer arranged between the magnetization pinned layer and the magnetization free layer, a cap layer arranged on the magnetization pinned layer or on the magnetization free layer, and a functional layer arranged in the magnetization pinned layer, in the magnetization free layer, in the interface between the magnetization pinned layer and the intermediate layer, in the interface between the intermediate layer and the magnetization free layer, or in the interface between the magnetization pinned layer or the magnetization free layer and the cap layer, and a pair of electrodes which pass a current perpendicularly to a plane of the magnetoresistive film, in which the functional layer is formed of a layer including nitrogen and a metal material containing 5 atomic % or more of Fe.
摘要:
A magneto-resistance effect element includes a first magnetic layer of which a magnetization direction is fixed; a second magnetic layer of which a magnetization direction is fixed; an intermediate layer which is provided between said first magnetic layer and said second magnetic layer; and a pair of electrodes for flowing a current perpendicular to a film surface of the resultant laminated body comprised of said first magnetic layer, said second magnetic layer and said intermediate layer. The intermediate layer includes insulating portions and metallic portions containing at least one selected from the group consisting of Fe, Co, Ni, Cr and the metallic portions are contacted with the first magnetic layer and the second magnetic layer.
摘要:
A method for manufacturing a magneto-resistance effect element includes: forming a fixed magnetization layer; forming a free magnetization layer; and forming a spacer layer with an insulating layer and a non-magnetic metallic path penetrating through the insulating layer, includes: forming a first non-magnetic metallic layer; forming, a metallic layer on a surface of the first non-magnetic metallic layer; irradiating, onto the metallic layer, ions or plasma including at least one of oxygen and nitrogen and at least one selected from the group consisting of Ar, Xe, He, Ne, kr so as to convert the metallic layer into the insulating layer and the non-magnetic metallic path containing the first non-magnetic metallic layer; forming a second non-magnetic metallic layer on the non-magnetic metallic path; and irradiating ions or plasma onto at least one of the fixed magnetization layer, the first metallic layer, the metallic layer, the insulating layer converted from the second metallic layer and the second non-magnetic metallic layer.
摘要:
There is provided a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer arranged between the magnetization pinned layer and the magnetization free layer and current paths passing through the insulating layer. The method includes, in producing the spacer layer, depositing a first non-magnetic metal layer forming the current paths, depositing a second metal layer to be converted into the insulating layer on the first non-magnetic metal layer, and performing two stages of oxidation treatments in which a partial pressure of an oxidizing gas in a first oxidation treatment is set to 1/10 or less of a partial pressure of an oxidizing gas in a second oxidation treatment, and the second metal layer being irradiated with an ion beam or a RF plasma of a rare gas in the first oxidation treatment.