Abstract:
A method and apparatus for measuring film thickness and sheet resistance. A four-point probe engages the surface of a film, and a measuring apparatus outputs a voltage waveform which induces a current in the outer probes of the four point probe and through the surface of the film. The two inner probes measure a voltage in the film created by the current. The current created by the voltage waveform and the voltage created across the inner probes are measured for each voltage level of the waveform. A sheet resistance of the film is calculated by taking a least square fit of the measured current and voltage and calculating the slope of the least square line fit. The sheet resistance is proportional to the slope of the least square line. The thickness of the film is calculated by dividing the film resistivity by the calculated sheet resistance.
Abstract:
A process is disclosed for the treatment of the backside or back surface of a semiconductor wafer such as a silicon wafer. By spacing the back side of a semiconductor wafer a predetermined distance from a cathode in a vacuum chamber and controlling the rf power and the pressure, a confined plasma may be used both to clean the back side of the wafer to remove impurities, including moisture and other occluded gases; as well as to deposit a layer of oxide on the back surface of the wafer to inhibit subsequent deposition of poorly adherent materials on the back side of the wafer which might otherwise flake off during processing of the front side of the wafer to form integrated circuits thereon.
Abstract:
A magnetic field enhanced single wafer plasma etch reactor is disclosed. The features of the reactor include an electrically-controlled stepped magnetic field for providing high rate uniform etching at high pressures; temperature controlled reactor surfaces including heated anode surfaces (walls and gas manifold) and a cooled wafer supporting cathode; and a unitary wafer exchange mechanism comprising wafer lift pins which extend through the pedestal and a wafer clamp ring. The lift pins and clamp ring are moved vertically by a one-axis lift mechanism to accept the wafer from a cooperating external robot blade, clamp the wafer to the pedestal and return the wafer to the blade. The electrode cooling combines water cooling for the body of the electrode and a thermal conductivity-enhancing gas parallel-bowed interface between the wafer and electrode for keeping the wafer surface cooled despite the high power densities applied to the electrode. A gas feed-through device applies the cooling gas to the RF powered electrode without breakdown of the gas. Protective coatings/layers of materials such as quartz are provided for surfaces such as the clamp ring and gas manifold. The combination of these features provides a wide pressure regime, high etch rate, high throughput single wafer etcher which provides uniformity, directionality and selectivity at high gas pressures, operates cleanly and incorporates in-situ self-cleaning capability.
Abstract:
An optical recording member is prepared by coating a thin layer of a colloidal dispersion, of minute particles of certain transition metals or their oxides in a polymeric binder, onto a substrate. The optical recording member may be made to achieve anti-reflecting conditions at the marking wavelength by making the substrate reflective and by using proper thickness for the dispersion layer.