Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
Hazard detector for providing a pre-alarm of a developing hazardous condition includes a detection module that detects a hazard level of smoke or carbon monoxide, a storage module that stores a pre-alarm threshold and an emergency threshold, a light source that generates light in a first color, a second color, and a third color, a speaker that generates an audible sound, a horn that generates an audible alarm that a higher volume than the speaker, and a processing module. The processing module receives the detected hazard level and compares it with the pre-alarm threshold and the emergency threshold. The processing module determines that the hazard level is greater than the pre-alarm threshold and less than the emergency threshold and generates an audible pre-alarm speech via the speaker that warns of the developing hazardous condition. The processing module also activates the light source in the second color.
Abstract:
In various embodiments, a hazard detector is presented. The hazard detector may include a hazard detection sensor that detects a presence of a type of hazard. The hazard detector may include a light and a light sensor that senses a brightness level in an ambient environment of the hazard detector. The hazard detector may include a processing system configured to receive an indication of the brightness level in the ambient environment of the hazard detector from the light sensor. The processing system may determine the brightness level in the ambient environment of the hazard detector has reached a threshold value. A status check of one or more components of the hazard detector may be performed. The processing system may cause the light to illuminate using a selected illumination state in response to the determining the brightness level in the ambient environment of the hazard detector has reached the threshold value.
Abstract:
Ambient amount of a hazardous condition may be monitored. A mode may be set to a state indicative of the hazardous condition being present in the ambient environment. It may then be determined that the amount of the hazard in the ambient environment has dropped below a threshold hazardous condition level. A time period may then be tracked during which the amount of the hazardous condition present in the ambient environment of the hazard detector has remained below the threshold hazardous condition level. It may be determined that the time period has reached at least a threshold duration, during such time period the amount of the hazardous condition present in the ambient environment of the hazard detector having remained below the threshold hazardous condition level. An indication of the hazardous condition easing may be output in response to the time period being at least the threshold duration.
Abstract:
Systems, methods, and related computer program products for using a distributed arrangement of wirelessly connected sensing microsystems are described. A plurality of wirelessly communicating sensing microsystems is provided, each sensing microsystem including a temperature sensor and a processor. The plurality of sensing microsystems is configured to jointly carry out at least one shared computational task. Each sensing microsystem may include a power management circuit configured to determine an amount of electrical power available for dedication to the at least one shared computational task or a heating effect generated in performing the shared computational task. The at least one shared computational task is apportioned among respective ones of the plurality of sensing microsystems according to the amount of electrical power determined to be available for dedication thereto at each respective sensing microsystem or the determined heating effect.
Abstract:
A user-friendly programmable thermostat is described that includes a body having a central electronic display surrounded by a ring that can be rotated and pressed inwardly to provide user input in a simple and elegant fashion. The current temperature and setpoint temperature are graphically displayed as prominent tick marks over a range of background tick marks on the electronic display. Different colors can be displayed to indicate currently active HVAC functions, and different intensities of colors can be displayed to indicate an amount of heating or cooling required to reach a target temperature. The setpoint temperature for the device can be altered by user rotation of the rotatable ring, and the programmed schedule can be displayed to the user and altered by the user by virtue of rotations and inward pressings of the ring. Initial device set up and installation, the viewing of device operation, the editing of various settings, and the viewing of historical energy usage information are made simple and elegant by virtue of the described form factor, display modalities, and user input modalities of the device.
Abstract:
A system including a thermostat user interface for a network-connected thermostat is described. The system includes a thermostat including a frustum-shaped shell body having a circular cross-section and a circular rotatable ring, which is user rotatable for adjusting a setting of the thermostat. The system further includes a client application that is operable on a touch-screen device separate from the thermostat, that displays a graphical representation of a circular dial, that detects a user-input motion proximate the graphical representation, that determines a user-selected setpoint temperature value based on the user-input motion, that displays a numerical representation of the user-selected setpoint temperature value, and that wirelessly transmits to the thermostat data representative of the user-selected setpoint temperature.
Abstract:
This patent specification relates to apparatus, systems, methods, and related computer program products for providing home security objectives. More particularly, this patent specification relates to a plurality of devices, including intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of useful home security objectives.
Abstract:
Systems and methods for facilitating water conservation and smart water control are provided. Water conservation and smart water control can be achieved using a smart water apparatus having the ability to approximate distance, mass, and/or specific characteristics of an object such as a human or inanimate object and adjust flow rate of water and/or temperature of the water based on the approximated distance, mass, and/or specific characteristics of an object. The smart water apparatus can be embodied, for example, in a network connected shower head or a network connected faucet.
Abstract:
Systems and methods are provided for efficiently controlling energy-consuming systems, such as heating, ventilation, or air conditioning (HVAC) systems. For example, an electronic device used to control an HVAC system may encourage a user to select energy-efficient temperature setpoints. Based on the selected temperature setpoints, the electronic device may generate or modify a schedule of temperature setpoints to control the HVAC system.