摘要:
A transistor. The transistor including: a well region in a substrate; a gate dielectric layer on a top surface of the well region; a polysilicon gate electrode on a top surface of the gate dielectric layer; spacers formed on opposite sidewalls of the polysilicon gate electrode; source/drain regions formed on opposite sides of the polysilicon gate electrode in the well region; a first doped region in the polysilicon gate electrode, the first doped region extending into the polysilicon gate electrode from a top surface of the polysilicon gate electrode; and a buried second doped region in the polysilicon gate electrode.
摘要:
A semiconductor structure in which a planar semiconductor device and a horizontal carbon nanotube transistor have a shared gate and a method of fabricating the same are provided in the present application. The hybrid semiconductor structure includes at least one horizontal carbon nanotube transistor and at least one planar semiconductor device, in which the at least one horizontal carbon nanotube transistor and the at least one planar semiconductor device have a shared gate and the at least one horizontal carbon nanotube transistor is located above a gate of the at least one planar semiconductor device.
摘要:
A method and structure for forming a semiconductor structure. A semiconductor substrate is provided. A trench is formed within the semiconductor substrate. A first layer of electrically insulative material is formed within the trench. A first portion and a second portion of the first layer of electrically insulative material is removed. A second layer of electrically insulative material is selectively grown on the first layer comprising the removed first portion and the removed second portion.
摘要:
Conductive sidewall spacer structures are formed using a method that patterns structures (mandrels) and activates the sidewalls of the structures. Metal ions are attached to the sidewalls of the structures and these metal ions are reduced to form seed material. The structures are then trimmed and the seed material is plated to form wiring on the sidewalls of the structures.
摘要:
A finFET structure includes a semiconductor fin located over a substrate. A gate electrode is located traversing the semiconductor fin. The gate electrode has a spacer layer located adjoining a sidewall thereof. The spacer layer does not cover completely a sidewall of the semiconductor fin. The gate electrode and the spacer layer may be formed using a vapor deposition method that provides for selective deposition upon a sidewall of a mandrel layer but not upon an adjoining surface of the substrate, so that the spacer layer does not cover completely the sidewall of the semiconductor fin. Other microelectronic structures may be fabricated using the lateral growth methodology.
摘要:
A method for forming a borderless contact for a semiconductor FET (Field Effect Transistor) device, the method comprising, forming a gate conductor stack on a substrate, forming spacers on the substrate, such that the spacers and the gate conductor stack partially define a volume above the gate conductor stack, wherein the spacers are sized to define the volume such that a stress liner layer deposited on the gate conductor stack substantially fills the volume, depositing a liner layer on the substrate, the spacers, and the gate conductor stack, depositing a dielectric layer on the liner layer, etching to form a contact hole in the dielectric layer, etching to form the contact hole in the liner layer, such that a portion of a source/drain diffusion area formed in the substrate is exposed and depositing contact metal in the contact hole.
摘要:
A sidewall image transfer process for forming sub-lithographic structures employs a layer of sacrificial polymer containing silicon that is deposited over a gate conductor layer and covered by a cover layer. The sacrificial polymer layer is patterned with conventional resist and etched to form a sacrificial mandrel. The edges of the mandrel are oxidized or nitrided in a plasma at low temperature, after which the polymer and the cover layer are stripped, leaving sublithographic sidewalls. The sidewalls are used as hardmasks to etch sublithographic gate structures in the gate conductor layer.
摘要:
Semiconductor structures and method of forming semiconductor structures. The semiconductor structures including nano-structures or fabricated using nano-structures. The method of forming semiconductor structures including generating nano-structures using a nano-mask and performing additional semiconductor processing steps using the nano-structures generated.
摘要:
A method for forming transistors with mutually-aligned double gates. The method includes the steps of (a) providing a wrap-around-gate transistor structure, wherein the wrap-around-gate transistor structure includes (i) semiconductor region, and (ii) a gate electrode region wrapping around the semiconductor region, wherein the gate electrode region is electrically insulated from the semiconductor region by a gate dielectric film; and (b) removing first and second portions of the wrap-around-gate transistor structure so as to form top and bottom gate electrodes from the gate electrode region, wherein the top and bottom gate electrodes are electrically disconnected from each other.
摘要:
A low-k dielectric material for use in the manufacture of semiconductor devices, semiconductor structures using the low-k dielectric material, and methods of forming such dielectric materials and fabricating such structures. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.