摘要:
A process for fabricating a semiconductor at a lower crystallization temperature and yet at a shorter period of time, which comprises forming an insulator coating on a substrate; exposing said insulator coating to a plasma; forming an amorphous silicon film on said insulator coating after its exposure to said plasma; and heat treating said silicon film in the temperature range of from 400 to 650° C. or at a temperature not higher than the glass transition temperature of the substrate. The nucleation sites are controlled by selectively exposing the amorphous silicon film to a plasma or by selectively applying a substance containing elements having a catalytic effect thereto. A process for fabricating a thin film transistor using the same is also disclosed.
摘要:
In a field effect type device having a thin film-like active layer, there is provided a thin film-like semiconductor device including a top side gate electrode on the active layer and a bottom side gate electrode connected to a static potential, the bottom side gate electrode being provided between the active layer and a substrate. The bottom side gate electrode may be electrically connected to only one of a source and a drain of the field effect type device. Also, the production methods therefor are disclosed.
摘要:
An auxiliary capacitor for a pixel of an active matrix type liquid crystal display is provided without decreasing the aperture ratio. A transparent conductive film for a common electrode is formed under a pixel electrode constituted by a transparent conductive film with an insulation film provided therebetween. Further, the transparent conductive film for the common electrode is maintained at fixed potential, formed so as to cover a gate bus line and a source bus line, and configured such that signals on each bus line are not applied to the pixel electrode. The pixel electrode is disposed so that all edges thereof overlap the gate bus line and source bus line. As a result, each of the bus lines serves as a black matrix. Further, the pixel electrode overlaps the transparent conductive film for the common electrode to form a storage capacitor.
摘要:
A semiconductor material and a method for forming the same, said semiconductor material having produced by a process comprising melting a noncrystal semiconductor film containing therein carbon, nitrogen, and oxygen each at a concentration of 5×1019 atoms·cm−3 or lower, preferably 1×1019 atoms·cm−3 or lower, by irradiating a laser beam or a high intensity light equivalent to a laser beam to said noncrystal semiconductor film, and then recrystallizing the thus molten amorphous silicon film. The present invention provides thin film semiconductors having high mobility at an excellent reproducibility, said semiconductor materials being useful for fabricating thin film semiconductor devices such as thin film transistors improved in device characteristics.
摘要翻译:一种半导体材料及其形成方法,所述半导体材料通过以下方法制备,所述方法包括以5×10 19原子/ cm 3以下,优选1×1019原子的浓度熔化含有碳,氮和氧的非晶半导体膜 cm-3以下,通过将激光等离子体的激光或高强度光照射到所述非晶半导体膜,然后使这样熔融的非晶硅膜重结晶。 本发明提供具有优异的再现性的高迁移率的薄膜半导体,所述半导体材料可用于制造薄膜晶体管,例如改善器件特性的薄膜晶体管。
摘要:
In producing a top gate type or a bottom gate type thin film transistor (TFT), after a metal film for forming silicide is formed on a semiconductor active layer provided on an insulating surface, an N-type or P-type impurity ion is introduced into the semiconductor active layer using an anodizable gate electrode and an anodic oxide formed on the surface of the gate electrode as masks. The exposing portion of the semiconductor active layer is reacted with the metal film, so that a silicide layer is formed in the portion. Then, non-reacted portion of the metal film is removed.
摘要:
In a field effect type device having a thin film-like active layer, there is provided a thin film-like semiconductor device including a top side gate electrode on the active layer and a bottom side gate electrode connected to a static potential, the bottom side gate electrode being provided between the active layer and a substrate. The bottom side gate electrode may be electrically connected to only one of a source and a drain of the field effect type device. Also, the production methods therefor are disclosed.
摘要:
An active matrix display device for suppressing voltage variation &Dgr;V due to off-operation of a gate pulse, including TFTs and picture-element electrodes, at least one of the TFTs being assigned to each picture element, and each of the TFTs having a gate electrode connected to a gate line (first gate line), and a source and a drain one of which is connected to a data line, wherein a picture-element electrode concerned is formed so as to be overlapped with the first gate line through an insulator, and also so as to be overlapped through an insulator with a gate line other than the first gate line or a wiring disposed in parallel to the first gate line.
摘要:
An active matrix circuit using top-gate type thin-film transistors is characterized in that an auxiliary capacitor is formed between a black matrix and an N-type or P-type active layer, and uses, as a dielectric, a silicon nitride layer used as a passivation film of an interlayer insulator. Also, an active matrix circuit using bottom-gate type thin-film transistors is characterized in that two auxiliary capacitors. One of the auxiliary capacitors is formed between a capacitor wiring line formed on a substrate and an N-type or P-type conductive region or a metal wiring line connected to the conductive region, and uses a gate insulating film as a dielectric. The other one of the auxiliary capacitors is formed between a black matrix and said N-type or P-type conductive region or said metal wiring line connected to the conductive region, and uses a silicon nitride layer used as a passivation film as a dielectric. Said two auxiliary capacitors are located in three-dimension for preventing aperture ratio from lowering.
摘要:
In a thin film transistor (TFT), a mask is formed on a gate electrode, and a porous anodic oxide is formed in both sides of the gate electrode using a relatively low voltage. A barrier anodic oxide is formed between the gate electrode and the porous anodic oxide and on the gate electrode using a relatively high voltage. A gate insulating film is etched using the barrier anodic oxide as a mask. The porous anodic oxide is selectively etched after etching barrier anodic oxide, to obtain a region of an active layer on which the gate insulating film is formed and the other region of the active layer on which the gate insulating film is not formed. An element including at least one of oxygen, nitrogen and carbon is introduced into the region of the active layer at high concentration in comparison with a concentration of the other region of the active layer. Further, N- or P-type impurity is introduced into the active layer. Accordingly, high resistance impurity regions are formed in both sides of a channel forming region.
摘要:
A method of manufacturing a semiconductor device comprises the steps of forming a first insulating film on a semiconductor layer, forming a gate electrode on the insulating film, pattering the first insulating film into a second insulating film so that a portion of the semiconductor layer is exposed while the second insulating film has extensions which extend beyond the side edges of the gate electrode, and performing ion introduction for forming impurity regions using the gate electrode and extensions of the gate insulating film as a mask. The condition of the ion introduction is varied in order to control the regions of the semiconductor layer to be added with the impurity and the concentration of the impurity therein.