Abstract:
A method of forming dual metal CMOS transistors includes forming a first silicon layer on a gate dielectric layer provided on a substrate. A first metal layer is formed on the NMOS device areas. A second metal layer is formed on the PMOS device areas. These first and second metal layers consist of different metals. A second silicon layer is deposited on the first and second metal layers. A dry etching technique is performed to etch the second silicon layer, the first and second metal layers, and the first silicon layer. The dry etching stops on the gate dielectric layer, thereby forming gate electrodes. The first and second metal layers are reacted with the first and second silicon layers to form suicides in the gate electrodes.
Abstract:
A strained silicon MOSFET employs a high thermal conductivity insulating material in the trench isolations to dissipate thermal energy generated in the MOSFET and to avoid self-heating caused by the poor thermal conductivity of an underlying silicon germanium layer. The high thermal conductivity material is preferably silicon carbide, and the isolations preferably extend through the silicon germanium layer to contact an underlying silicon layer so as to conduct thermal energy from the active region to the silicon layer.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
A dual-metal CMOS arrangement and method of making the same provides a substrate and a plurality of NMOS devices and PMOS devices formed on the substrate. Each of the plurality of NMOS devices and PMOS devices have gate electrodes. Each NMOS gate electrode includes a first silicide region on the substrate and a first metal region on the first silicide region. The first silicide region of the NMOS gate electrode consists of a first silicide having a work function that is close to the conduction band of silicon. Each of the PMOS gate electrodes includes a second silicide region on the substrate and a second metal region on the second silicide region. The second silicide region of the PMOS gate electrode consists of a second silicide having a work function that is close to the valence band of silicon.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention relates to a method of processing selected surfaces in a semiconductor process chamber by creating a temperature differential between the selected surfaces and contacting the surfaces with a reactant that preferentially react with a surface at one end of the temperature differential relative to the other selected surface(s). More particularly, the invention relates to the use of nitrogen trifluoride (NF3) gas for in situ cleaning of cold wall process chambers such as Rapid thermal Chemical Vaporization (“RTCVD”) systems.
Abstract translation:本发明涉及一种通过在所选择的表面之间产生温度差并使表面与相对于另一个所选择的表面的温度差的一端优先与表面反应的反应物接触来处理半导体处理室中的选定表面的方法 表面。 更具体地说,本发明涉及三氟化氮(NF 3 N 3)气体用于诸如快速热化学气化(“RTCVD”)系统的冷壁处理室的原位清洁的用途。
Abstract:
A method of forming a finFET transistor using a sidewall epitaxial layer includes forming a silicon germanium (SiGe) layer above an oxide layer above a substrate, forming a cap layer above the SiGe layer, removing portions of the SiGe layer and the cap layer to form a feature, forming sidewalls along lateral walls of the feature, and removing the feature.