Abstract:
The present invention is about an elastic extensible rack for bathroom towels, curtains, or paper tissue rolls. Elastic devices are attached to the two ends of the rack. The distance between the rack and the wall is flexible due to such elastic devices. The rack itself can be divided to multiple sections like a telescope. There is an elastic device attached to each section so the entire length of the rack is adjustable.
Abstract:
The present invention is about an oval or asymmetric wheel design for luggage bags. The wheel is in an ellipsoidal configuration. Suspension, cushion, or elastic devices are installed in the oval wheels. These devices, when compressed by the weight of the luggage bag, store energy. When the luggage bag is shifted in the subsequent phase of the motion by the traveler, the energy in the devices is released from the cushion, and pushes the luggage toward the intended direction.
Abstract:
In accordance with an embodiment, a method of forming a semiconductor structure can include forming a source region of a first conductivity type in a well region of a second conductivity type within a semiconductor region, and forming a first diffusion barrier region disposed between the source region and the well region. The method can include forming a heavy body region of the second conductivity type in the well region and forming a second diffusion bather region having a portion on a side of the heavy body region with a thickness different than a thickness of a portion on a bottom portion of the heavy body region. The method can also include forming a gate electrode, and forming a dielectric insulating the gate electrode from the semiconductor region.
Abstract:
A semiconductor structure comprises trenches extending into a semiconductor region. Portions of the semiconductor region extend between adjacent trenches forming mesa regions. A gate electrode is in each trench. Well regions of a first conductivity type extend in the semiconductor region between adjacent trenches. Source regions of a second conductivity type are in the well regions. Heavy body regions of the first conductivity type are in the well regions. The source regions and the heavy body regions are adjacent trench sidewalls, and the heavy body regions extend over the source regions along the trench sidewalls to a top surface of the mesa regions.
Abstract:
A vertically-conducting planar-gate field effect transistor includes a silicon region of a first conductivity type, a silicon-germanium layer extending over the silicon region, a gate electrode laterally extending over but being insulated from the silicon-germanium layer, a body region of the second conductivity type extending in the silicon-germanium layer and the silicon region, and source region of the first conductivity type extending in the silicon-germanium layer. The gate electrode laterally overlaps both the source and body regions such that a portion of the silicon germanium layer extending directly under the gate electrode between the source region and an outer boundary of the body region forms a channel region.
Abstract:
A semiconductor structure comprises a drift region of a first conductivity type in a semiconductor region. A well region of a second conductivity type is over the drift region. A source region of the first conductivity type is in an upper portion of the well region. A heavy body region of the second conductivity type extends in the well region. The heavy body region has a higher doping concentration than the well region. A first diffusion barrier region at least partially surrounds the heavy body region. A gate electrode is insulated from the semiconductor region by a gate dielectric.
Abstract:
The present invention is directed to novel polypeptides having sequence identity with IL-17, IL-17 receptors and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention. Further provided herein are methods for treating degenerative cartilaginous disorders and other inflammatory diseases.
Abstract:
In one embodiment, the invention is a method and apparatus for fabricating a high-performance band-edge complementary metal-oxide-semiconductor device. One embodiment of a method for fabricating a complementary metal-oxide-semiconductor device includes fabricating an n-type metal-oxide-semiconductor device using a gate first process, and fabricating a p-type metal-oxide-semiconductor device using a gate last process.
Abstract:
A method of forming a field effect transistor (FET) includes forming a carbon-containing region over a substrate. An epitaxial layer is formed over the carbon-containing region. The epitaxial layer has a lower doping concentration than the substrate. A body region of a first conductivity type is formed in the epitaxial layer. The epitaxial layer is of a second conductivity type and forms a p-n junction with the body region. Gate electrodes are formed adjacent to but insulated from the body regions. Source regions of the second conductivity type are formed in the body regions. The source regions form p-n junctions with the body regions.
Abstract:
A method for forming a shielded gate trench field effect transistor (FET) includes forming trenches in a semiconductor region, forming a shield electrode in a bottom portion of each trench, and forming an inter-electrode dielectric (IED) extending over the shield electrode. The IED may comprise a low-k dielectric. The method also includes forming a gate electrode in an upper portion of each trench over the IED.