摘要:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric composed of a first dielectric layer disposed on the first fin active region, and a second, different, dielectric layer disposed on the first dielectric layer. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric composed of the second dielectric layer disposed on the second fin active region.
摘要:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
摘要:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
摘要:
Techniques and circuitry are disclosed for implementing non-volatile storage that exploit bias temperature instability (BTI) effects of high-k/metal-gate n-type or p-type metal oxide semiconductor (NMOS or PMOS) transistors. A programmed bitcell of, for example, a memory or programmable logic circuit exhibits a threshold voltage shift resulting from an applied programming bias used to program bitcells. In some cases, applying a first programming bias causes the device to have a first state, and applying a second programming bias causes the device to have a second state that is different than the first state. Programmed bitcells can be erased by applying an opposite polarity stress, and re-programmed through multiple cycles. The bitcell configuration can be used in conjunction with column/row select circuitry and/or readout circuitry, in accordance with some embodiments.
摘要:
A method of selectively forming a spacer on a first class of transistors and devices formed by such methods. The method can include depositing a conformal first deposition layer on a substrate with different classes of transistors situated thereon, depositing a blocking layer to at least one class of transistors, dry etching the first deposition layer, removing the blocking layer, depositing a conformal second deposition layer on the substrate, dry etching the second deposition layer and wet etching the remaining first deposition layer. Devices may include transistors of a first class with larger spacers compared to spacers of transistors of a second class.
摘要:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
摘要:
A method of selectively forming a spacer on a first class of transistors and devices formed by such methods. The method can include depositing a conformal first deposition layer on a substrate with different classes of transistors situated thereon, depositing a blocking layer to at least one class of transistors, dry etching the first deposition layer, removing the blocking layer, depositing a conformal second deposition layer on the substrate, dry etching the second deposition layer and wet etching the remaining first deposition layer. Devices may include transistors of a first class with larger spacers compared to spacers of transistors of a second class.
摘要:
The present invention discloses a method comprising: forming a sacrificial polysilicon gate (of a transistor) and a polysilicon resistor; and replacing said sacrificial polysilicon gate (of said transistor) with a metal gate while covering said polysilicon resistor.
摘要:
A programmable anti-fuse element includes a substrate (224), an N-well (426) in the substrate, an electrically insulating layer (427) over the N-well, and a gate electrode (430) over the electrically insulating layer. The gate electrode has n-type doping so that the N-well is able to substantially contain within its boundaries a current generated following a programming event of the programmable anti-fuse element. In the same or another embodiment, a twice-programmable fuse element (100) includes a metal gate fuse (110) and an oxide anti-fuse (120) such as the programmable anti-fuse element just described.
摘要:
In general, in one aspect, a method includes forming a semiconductor substrate having an N+ diffusion region, a shallow trench isolation (STI) region adjacent to the N+ diffusion region, and a blocked salicide poly resistor (BSR) region over the STI region. An oxide layer is over the substrate. A nitride layer is formed over the oxide layer and is annealed. A resist layer is patterned on the annealed nitride layer, wherein the resist layer covers a portion of the BSR region. The annealed nitride layer is etched using the resist layer as a pattern. The resist layer is removed and the oxide layer is etched using the annealed nitride layer as a pattern. Germanium pre-amorphization is implanted into the substrate, wherein the oxide and the annealed nitride layers protect a portion of the BSR region from the implanting.