摘要:
The invention provides a method for manufacturing a semiconductor device that comprises placing a metallic gate layer over a gate dielectric layer where the metallic gate layer has a crystallographic orientation, and re-orienting the crystallographic orientation of the metallic gate layer by subjecting the metallic gate layer to a hydrogen anneal.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
摘要:
The present invention provides, in one embodiment, a process for forming a dual work function metal gate semiconductor device (100). The process includes providing a semiconductor substrate (105) having a gate dielectric layer (110) thereon and a metal layer (205) on the gate dielectric layer. A work function of the metal layer is matched to a conduction band or a valence band of the semiconductor substrate. The process also includes forming a conductive barrier layer (210) on a portion (215) of the metal layer and a material layer (305) on the metal layer. The metal layer and the material layer are annealed to form a metal alloy layer (405) to thereby match a work function of the metal alloy layer to another of the conduction band or the valence band of the substrate. Other embodiments of the invention include a dual work function metal gate semiconductor device (900) and an integrated circuit (1000).
摘要:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
摘要:
The present invention provides a method of manufacturing a semiconductor device. The semiconductor device (100), among other possible elements, includes a first transistor (120) located over a semiconductor substrate (110), wherein the first transistor (120) has a gate electrode (135) that includes a metal silicide layer 135a over which is located a silicon gate layer (135b) together which have a work function associated therewith, and a second transistor (125) located over the semiconductor substrate (110) and proximate the first transistor (120), wherein the second transistor (125) also includes a gate electrode (160) that includes a metal silicide layer (160a) over which is located a silicon gate layer (160b) together which have a different work function from that of the first gate electrode (135) associated therewith.
摘要:
A dielectric layer (50) is formed over a semiconductor (10) that contains a first region (20) and a second region (30). A polysilicon layer is formed over the dielectric layer (50) and over the first region (20) and the second region (30). The polysilicon layer can comprise 0 to 50 atomic percent of germanium. A metal layer is formed over the polysilicon layer and one of the regions and reacted with the underlying polysilicon layer to form a metal silicide or a metal germano silicide. The polysilicon and metal silicide or germano silicide regions are etched to form transistor gate regions (60) and (90) respectively. If desired a cladding layer (100) can be formed above the metal gate structures.
摘要:
Methods are presented for fabricating transistor gate structures, wherein upper and lower metal suicides are formed above a gate dielectric. In one example, the lower silicide is formed by depositing a thin first silicon-containing material over the gate dielectric, which is implanted and then reacted with a first metal by annealing to form the lower silicide. A capping layer can be formed over the first metal prior to annealing, to prevent oxidation of the metal prior to silicidation, and a barrier layer can be formed over the lower silicide to prevent reaction with subsequently formed silicon material. In another example, the lower silicide is a multilayer silicide structure including a plurality of metal silicide sublayers.
摘要:
The invention provides methods and compositions for treatment of bacterial infections. The composition may be a combination of factors, which include A0, A1, B1, B2, C0, C1, isoB0, and MAG, in the presence of low level solvent. Methods of the invention include administration of dalbavancin formulations for treatment of a bacterial infection, in particular a Gram-positive bacterial infection of skin and soft tissue. Dosing regimens include multiple dose administration of dalbavancin, which often remains at therapeutic levels in the bloodstream for at least one week, providing prolonged therapeutic action against a bacterial infection. Dosing regimens for renal patients are also included.
摘要翻译:本发明提供了用于治疗细菌感染的方法和组合物。 组合物可以是因素的组合,其包括A 1,A 1,B 1,B 2, 在低级溶剂存在下,将C 1 O 3,C 1 H 2,异丁基低级烷基和杂芳基。 本发明的方法包括施用达巴万星制剂用于治疗细菌感染,特别是皮肤和软组织的革兰氏阳性细菌感染。 给药方案包括达巴万星的多剂量给药,其通常在血流中保持治疗水平至少一周,为细菌感染提供长时间的治疗作用。 还包括肾脏患者的给药方案。
摘要:
A MOSFET structure with high-k gate dielectric layer and silicon or metal gates, amorphizing treatment of the high-k gate dielectric layer as with a plasma or ion implantation.