Abstract:
A tunnel field transistor (TFET) device includes a fin structure that protrudes from a substrate surface. The fin structure includes a base portion proximate to the substrate surface, a top portion, and a first pair of sidewalls extending from the base portion to the top portion. The first pair of sidewalls has a length corresponding to a length of the fin structure. The fin structure also includes a first doped region having a first dopant concentration at the base portion of the fin structure. The fin structure also includes a second doped region having a second dopant concentration at the top portion of the fin structure. The TFET device further includes a gate including a first conductive structure neighboring a first sidewall of the first pair of sidewalls. A dielectric layer electrically isolates the first conductive structure from the first sidewall.
Abstract:
A method includes selectively creating a first breakdown condition and a second breakdown condition at a semiconductor transistor structure. The first breakdown condition is between a source overlap region of the semiconductor transistor structure and a gate of the semiconductor transistor structure. The second breakdown condition is between ad rain overlap region of the semiconductor transistor structure and the gate.
Abstract:
Embodiments disclosed in the detailed description include metal oxide semiconductor (MOS) isolation schemes with continuous active areas separated by dummy gates. A MOS device includes an active area formed from a material with a work function that is described as either an n-metal or a p-metal. Active components are formed on this active area using materials having a similar work function. Isolation is effectuated by positioning a dummy gate between the active components. The dummy gate is made from a material having an opposite work function relative to the material of the active area. For example, if the active area was a p-metal material, the dummy gate would be made from an n-metal, and vice versa.
Abstract:
Metal-on-Metal (MoM) capacitors having laterally displaced layers and related systems and methods are disclosed. In one embodiment, a MoM capacitor includes a plurality of vertically stacked layers that are laterally displaced relative to one another. Lateral displacement of the layers minimizes cumulative surface process variations making a more reliable and uniform capacitor.
Abstract:
Spiral metal-on-metal (MoM or SMoM) capacitors and related systems and methods of forming MoM capacitors are disclosed. In one embodiment, a MoM capacitor disposed in a semiconductor die is disclosed. The MoM capacitor comprises a first electrode coupled to a first trace. The first trace is coiled in a first inwardly spiraling pattern and comprised of first parallel trace segments. The MoM capacitor also comprises a second electrode coupled to a second trace. The second trace is coiled in the first inwardly spiraling pattern and comprised of second parallel trace segments interdisposed between the first parallel trace segments. Reduced variations in the capacitance allow circuit designers to build circuits with tighter tolerances and generally improve circuit reliability.
Abstract:
In a particular embodiment, a method of forming a metal-insulator-metal (MIM) capacitor includes removing, using a lithographic mask, a first portion of an optical planarization layer to expose a region in which the MIM capacitor is to be formed. A second portion of an insulating layer is formed on a first conductive layer that is formed on a plurality of trench surfaces within the region. The method further includes removing at least a third portion of the insulating layer according to a lift-off technique.
Abstract:
A semiconductor die having a plurality of metal layers, including a set of metal layers having a preferred direction for minimum feature size. The set of metal layers are such that adjacent metal layers have preferred directions orthogonal to one another. Finger capacitors formed in the set of metal layers are such that a finger capacitor formed in one metal layer has a finger direction parallel to the preferred direction of that metal layer. In bidirectional metal layers, capacitor fingers may be in either direction.
Abstract:
Disclosed is apparatus including a vertical spiral inductor. The vertical spiral inductor may include a plurality of dielectric layers formed on a substrate, a plurality of conductive layers, each of the plurality of conductive layers disposed on each of the plurality of dielectric layers, a plurality of insulating layers, each of the plurality of insulating layers disposed on each of the plurality of conductive layers, wherein each of the plurality of insulating layers separates each of the plurality of dielectric layers. A first spiral coil is arranged in a first plane perpendicular to the substrate, where the first spiral coil is formed of first portions of the plurality of conductive layers and a first set of vias of a plurality of vias, configured to connect the first portions of the plurality of conductive layers.
Abstract:
A vertical transport field effect transistor (VTFET) comprising: a plurality of FET structures on a substrate; the plurality of FET structures comprising: a first n-type FET structure oriented in a first plane direction relative to the substrate; and a first p-type FET structure oriented in a second plane direction relative to the substrate; wherein the first n-type FET structure and the first p-type FET structure each comprises a FIN having a FIN height, H, wherein H defines the FIN height orthogonal to a surface of the substrate, each FIN being configured to transport charge carriers orthogonal to the surface of the substrate along the FIN height.
Abstract:
A vertical transport field effect transistor (VTFET) comprising: a plurality of FET structures on a substrate; the plurality of FET structures comprising: a first n-type FET structure oriented in a first plane direction relative to the substrate; and a first p-type FET structure oriented in a second plane direction relative to the substrate; wherein the first n-type FET structure and the first p-type FET structure each comprises a FIN having a FIN height, H, wherein H defines the FIN height orthogonal to a surface of the substrate, each FIN being configured to transport charge carriers orthogonal to the surface of the substrate along the FIN height.