Abstract:
Dynamic lane management for interference mitigation is disclosed. In one aspect, an integrated circuit (IC) is provided that employs a control system configured to mitigate electromagnetic interference (EMI) caused by an aggressor communications bus. The control system is configured to receive information related to EMI conditions and adjust which lanes of the aggressor communications bus are employed for signal transmission. The IC includes an interface configured to couple to the aggressor communications bus. The interface is configured to transmit signals to and receive signals from the aggressor communications bus. The control system is configured to use the information related to the EMI conditions to assign signals to be transmitted via particular lanes of the aggressor communications bus to mitigate the EMI experienced by a victim receiver. The control system provides designers with an additional tool that may reduce the performance degradation of the victim receiver attributable to EMI.
Abstract:
Signaling protocols for radio frequency front-end control interface (RFFE) buses are disclosed. In an exemplary aspect, the RFFE protocol is modified to provide addresses that are shorter than the normal four bits allocated by the RFFE protocol. By allocating fewer bits to an address, frames sent across an RFFE bus are shorter, and thus, bus turnaround time is improved, which reduces overall latency. Further, it is possible that shorter messages may provide incremental power savings. In a further exemplary aspect, different portions of a frame are transmitted using different data rates. In particular, a bus management portion may be sent using a single data rate (SDR), and a payload portion may be sent using a double data rate (DDR). The net effect of using the DDR on the payload portion is to reduce bus turnaround time, and thus, reduce latency.
Abstract:
A line multiplexed UART interface is provided that multiplexes a UART transmit and CTS functions on a transmit pin and that multiplexes a UART receive and RTS functions on a receive pin. In this fashion, the conventional need for an additional RTS pin and an additional CTS pin is obviated such that the line multiplexed UART interface uses just the transmit pin and the receive pin.
Abstract:
Various arrangements are presented for managing coexistence of a global navigation satellite system (GNSS) receiver with a radio access technology (RAT) transceiver. A coexistence manager may receive an indication of a characteristic of a RAT transceiver for a scheduled operating event. Based on the characteristic of the RAT transceiver for the operating event, the coexistence manager may select a space vehicle of a GNSS to use for a location determination by the GNSS receiver. The GNSS receiver may then receive a signal from the space vehicle of the GNSS during the operating event of the RAT transceiver. Location determination using the signal received from the space vehicle received during the operating event of the RAT transceiver may then occur.
Abstract:
A finite state machine is provided that both serializes virtual GPIO signals and messaging signals and that deserializer virtual GPIO signals and the messaging signals. The finite state machine frames the serialized virtual GPIO signals and messaging signals into frames each demarcated by a start bit and an end bit.
Abstract:
Techniques are described for tunneling high definition multimedia interface (HDMI) data over a wireless connection from an HDMI-capable source device to a client device that is physically connected to an HDMI-capable sink device via an HDMI connector. The techniques enable wireless transmission of HDMI data without video compression by using an encapsulation scheme that maps HDMI audio and video channels into a transport stream format and maps HDMI side channels into an IP datagram for transmission over the wireless connection. The source device may operate as an HDMI controller and perform HDMI-based data, control, and security processing required for HDMI connectivity with the sink device via the client device. The client device, therefore, may be a “dummy” client device that does not perform HDMI-based processing, but acts as a wireless HDMI bridge to pass the HDMI data between the source device and the sink device.
Abstract:
Dynamic interface management for interference mitigation is disclosed. In one aspect, an integrated circuit (IC) is provided that employs a control system configured to mitigate electromagnetic interference (EMI) caused by an aggressor communications bus. The control system is configured to receive information related to EMI conditions and adjust a data/clock mode of an interface corresponding to the aggressor communications bus. In this manner, the interface is configured to couple to the aggressor communications bus. The interface is configured to transmit signals to and receive signals from the aggressor communications bus. The control system is configured to use the information related to the EMI conditions to set the data/clock mode of the interface to mitigate the EMI experienced by a victim receiver. Thus, the control system provides designers with an additional tool that may reduce performance degradation of the victim receiver attributable to EMI.
Abstract:
System, methods, and apparatuses are described that facilitate a first device to transmit/retransmit a message to a second device. The first device transmits a first message to the second device. The first device then receives a second message and identifies a hit of the second message indicating an originator of the second message. If the bit indicates the first device as the originator of the second message, then the second message is an echo of the first message, Reception of the echo indicates that the second device is in a sleep state. Accordingly, the first device waits for the second device to wake and retransmits the first message to the second device to ensure that any packets lost during the original transmission of the first message (when the second device was asleep) are now retransmitted while the second device is known to be awake.
Abstract:
A method of wireless communication includes identifying a first radio operating in a first mode and a second radio operating in a second mode defined within one device. The first radio and the second radio operate on a same radio access technology (RAT) and also operate on a same band. The method also includes altering a communication time of the first radio and/or the second radio to reduce interference.
Abstract:
A device is provided that has a bus including a first line and a second line. A first set of devices are coupled to the bus and, in a first mode of operation, configured to use the first line for data transmissions and use the second line for a first clock signal. One or more additional lines are connected between two or more of the devices in the first set of devices for transmitting signaling between the two or more devices. A second set of devices are configured to use the bus and at least one of the additional lines for data transmissions in a second mode of operation, where in the second mode of operation symbols are encoded across the first line, the second line, and the at least one of the additional lines.