Abstract:
To provide a novel oxide semiconductor film. The oxide semiconductor film includes In, M, and Zn. The M is Al, Ga, Y, or Sn. In the case where the proportion of In in the oxide semiconductor film is 4, the proportion of M is greater than or equal to 1.5 and less than or equal to 2.5 and the proportion of Zn is greater than or equal to 2 and less than or equal to 4.
Abstract:
A transistor with stable electrical characteristics or a transistor with normally-off electrical characteristics. The transistor is a semiconductor device including a conductor, a semiconductor, a first insulator, and a second insulator. The semiconductor is over the first insulator. The conductor is over the semiconductor. The second insulator is between the conductor and the semiconductor. The first insulator includes fluorine and hydrogen. The fluorine concentration of the first insulator is higher than the hydrogen concentration of the first insulator.
Abstract:
A method for manufacturing a semiconductor device includes the steps of forming a first insulating film over a first gate electrode over a substrate while heated at a temperature higher than or equal to 450° C. and lower than the strain point of the substrate, forming a first oxide semiconductor film over the first insulating film, adding oxygen to the first oxide semiconductor film and then forming a second oxide semiconductor film over the first oxide semiconductor film, and performing heat treatment so that part of oxygen contained in the first oxide semiconductor film is transferred to the second oxide semiconductor film.
Abstract:
Favorable electrical characteristics are given to a semiconductor device. Furthermore, a semiconductor device having high reliability is provided. One embodiment of the present invention is an oxide semiconductor film having a plurality of electron diffraction patterns which are observed in such a manner that a surface where the oxide semiconductor film is formed is irradiated with an electron beam having a probe diameter whose half-width is 1 nm. The plurality of electron diffraction patterns include 50 or more electron diffraction patterns which are observed in different areas, the sum of the percentage of first electron diffraction patterns and the percentage of second electron diffraction patterns accounts for 100%, the first electron diffraction patterns account for 90% or more, the first electron diffraction pattern includes observed points which indicates that a c-axis is oriented in a direction substantially perpendicular to the surface where the oxide semiconductor film is formed.
Abstract:
A manufacturing method of a semiconductor device in which the threshold is corrected is provided. In a semiconductor device including a plurality of transistors each includes a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit for supplying a signal to the gate electrode and a circuit for supplying a signal to the source or drain electrode are electrically separated from each other. The process is performed in the state where the potential of the former circuit is set higher than the potential of the latter circuit.
Abstract:
A manufacturing method of a semiconductor device in which the threshold is adjusted to an appropriate value is provided. The semiconductor device includes a semiconductor, a source or drain electrode electrically connected to the semiconductor, a first gate electrode and a second gate electrode between which the semiconductor is sandwiched, an electron trap layer between the first gate electrode and the semiconductor, and a gate insulating layer between the second gate electrode and the semiconductor. By keeping a potential of the first gate electrode higher than a potential of the source or drain electrode for 1 second or more while heating, electrons are trapped in the electron trap layer. Consequently, threshold is increased and Icut is reduced.