摘要:
A method of forming photo masks having rectangular patterns and a method for forming a semiconductor structure using the photo masks is provided. The method for forming the photo masks includes determining a minimum spacing and identifying vertical conductive feature patterns having a spacing less than the minimum spacing value. The method further includes determining a first direction to expand and a second direction to shrink, and checking against design rules to see if the design rules are violated for each of the vertical conductive feature patterns identified. If designed rules are not violated, the identified vertical conductive feature pattern is replaced with a revised vertical conductive feature pattern having a rectangular shape. The photo masks are then formed. The semiconductor structure can be formed using the photo masks.
摘要:
A method is provided for forming a metal gate using a gate last process. A trench is formed on a substrate. The profile of the trench is modified to provide a first width at the aperture of the trench and a second width at the bottom of the trench. The profile may be formed by including tapered sidewalls. A metal gate may be formed in the trench having a modified profile. Also provided is a semiconductor device including a gate structure having a larger width at the top of the gate than the bottom of the gate.
摘要:
A novel SRAM memory cell structure and method of making the same are provided. The SRAM memory cell structure comprises strained PMOS transistors formed in a semiconductor substrate. The PMOS transistors comprise epitaxial grown source/drain regions that result in significant PMOS transistor drive current increase. An insulation layer is formed atop an STI that is used to electrically isolate adjacent PMOS transistors. The insulation layer is substantially elevated from the semiconductor substrate surface. The elevated insulation layer facilitates the formation of desirable thick epitaxial source/drain regions, and prevents the bridging between adjacent epitaxial layers due to the epitaxial layer lateral extension during the process of growing epitaxial sour/drain regions. The processing steps of forming the elevated insulation layer are compatible with a conventional CMOS process flow.
摘要:
A strain-induced layer is formed atop a MOS device in order to increase carrier mobility in the channel region. The dimension of the strain-induced layer in preferred embodiments may lead to an optimized drive current increase and improved drive current uniformity in an NMOS and PMOS device. An advantage of the preferred embodiments is that improved device performance is obtained without adding complex processing steps. A further advantage of the preferred embodiments is that the added processing steps can be readily integrated into a known CMOS process flow. Moreover, the creation of the photo masks defining the tensile and compressive strain-induced layers does not require extra design work on an existed design database.
摘要:
The mechanisms of forming SiC crystalline regions on Si substrate described above enable formation and integration of GaN-based devices and Si-based devices on a same substrate. The SiC crystalline regions are formed by implanting carbon into regions of Si substrate and then annealing the substrate. An implant-stop layer is used to cover the Si device regions during formation of the SiC crystalline regions.
摘要:
A method of forming an integrated circuit structure includes providing a semiconductor substrate; and forming a first and a second MOS device. The first MOS device includes a first active region in the semiconductor substrate; and a first gate over the first active region. The second MOS device includes a second active region in the semiconductor substrate; and a second gate over the second active region. The method further include forming a dielectric region between the first and the second active regions, wherein the dielectric region has an inherent stress; and implanting the dielectric region to form a stress-released region in the dielectric region, wherein source and drain regions of the first and the second MOS devices are not implanted during the step of implanting.
摘要:
A semiconductor device is provided which includes a semiconductor substrate having a first region and a second region, transistors having metal gates formed in the first region, and at least one capacitor formed in the second region. The capacitor includes a top electrode having at least one stopping structure formed in the top electrode, the at least one stopping structure being of a different material from the top electrode, a bottom electrode, and a dielectric layer interposed between the top electrode and the bottom electrode.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer, forming a first metal layer over the capping layer, the first metal layer having a first work function, forming a mask layer over the first metal layer in the first active region, removing the first metal layer and at least a portion of the capping layer in the second active region using the mask layer, and forming a second metal layer over the partially removed capping layer in the second active region, the second metal layer having a second work function.
摘要:
A semiconductor structure includes an array of unit metal-oxide-semiconductor (MOS) devices arranged in a plurality of rows and a plurality of columns is provided. Each of the unit MOS devices includes an active region laid out in a row direction and a gate electrode laid out in a column direction. The semiconductor structure further includes a first unit MOS device in the array and a second unit MOS device in the array, wherein active regions of the first and the second unit MOS devices have different conductivity types.
摘要:
Various methods for protecting a gate structure during contact formation are disclosed. An exemplary method includes: forming a gate structure over a substrate, wherein the gate structure includes a gate and the gate structure interposes a source region and a drain region disposed in the substrate; patterning a first etch stop layer such that the first etch stop layer is disposed on the source region and the drain region; patterning a second etch stop layer such that the second etch stop layer is disposed on the gate structure; and forming a source contact, a drain contact, and a gate contact, wherein the source contact and the drain contact extend through the first etch stop layer and the gate contact extends through the second etch stop layer, wherein the forming the source contact, the drain contact, and the gate contact includes simultaneously removing the first etch stop layer and the second etch stop layer to expose the gate, source region, and drain region.